Megastigmanes and Their Glucosides from the Whole Plant of Sedum sarmentosum¹

Masayuki Yoshikawa,*,† Toshio Morikawa,†,‡ Yi Zhang,† Seikou Nakamura,† Osamu Muraoka,‡,§ and Hisashi Matsuda†

Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8412, Japan, and Pharmaceutical Research and Technology Institute and School of Pharmacy, Kinki University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan

Received October 24, 2006

Two new megastigmanes, samentoic acid (1) and samentol A (2), and six new megastigmane glucosides, sedumosides A₁ (3), A₂ (4), A₃ (5), B (6), C (7), and D (8), were isolated from the whole plant of *Sedum samentosum* together with eight known megastigmanes (9–16). The absolute stereostructures of 1-8 were elucidated on the basis of chemical and physicochemical evidence, including the application of the modified Mosher's method.

The plant *Sedum sarmentosum* (Crassulaceae) is a perennial herb widely distributed on the mountain slopes in China (e.g., Anhui, Hebei, Jiangxi, and Jiangsu Provinces). The whole plant of *S. sarmentosum* has been used for the treatment of chronic viral hepatitis in Chinese and Korean traditional medicines.^{2,3} In previous studies, several flavonoid,^{4–7} sterol,^{5,8} triterpene,^{5,9} and cyanogenic constituents^{10,11} were isolated from this herbal medicine. During the course of our studies on bioactive constituents from Chinese natural medicines,^{1,12–24} two new megastigmanes, sarmentoic acid (1) and sarmentol A (2), and six new megastigmane glucosides, sedumosides A₁ (3), A₂ (4), A₃ (5), B (6), C (7), and D (8), were isolated from the whole plant of *S. sarmentosum* together with eight known megastigmanes (9–16). This paper deals with the isolation and structure elucidation, including the absolute configuration, of 1–8.

Results and Discussion

The fresh whole plant of *S. sarmentosum* was extracted with hot H₂O, and the H₂O extract was further treated with MeOH to give a MeOH-soluble extract (0.57% from the fresh plant). The MeOH-soluble extract was subjected to Diaion HP-20 column chromatography (H₂O \rightarrow MeOH) to give H₂O- and MeOH-eluted fractions (0.44 and 0.13%, respectively). The MeOH-eluted fraction was subjected to normal- and reversed-phase column chromatographies and finally HPLC to give **1–8** together with (3*S*,5*R*,6*S*,9*R*)megastigmane-3,9-diol²⁵ (**9**), staphylionoside D²⁶ (**10**), myrsinionosides A²⁵ (**11**) and D²⁵ (**12**), alangiosides A²⁷ (**13**) and J²⁵ (**14**), 3-hydroxy-5,6-epoxy- β -ionol 9-*O*- β -D-glucopyranoside²⁸ (**15**), and platanionoside D²⁹ (**16**).

Sarmentoic acid (1) was obtained as an amorphous powder $([\alpha]^{27}_{D} - 3.3 \text{ in MeOH})$. The IR spectrum of **1** showed absorption bands at 3364 and 1713 cm⁻¹ ascribable to hydroxyl and carboxyl functions. In the positive-ion FABMS of **1**, a quasimolecular ion peak was observed at m/z 267 [M + Na]⁺, and HRFABMS analysis revealed the molecular formula of **1** to be $C_{13}H_{24}O_4$. The ¹H (pyridine- d_5 , Table 1) and ¹³C NMR (Table 2) spectra of **1**, which were assigned by various NMR experiments,³⁰ showed signals assignable to three methyls [δ 1.03, 1.34 (both s, H₃-12, 11), 1.07 (d, J = 6.7 Hz, H₃-13)], two methines bearing an oxygen function [δ 4.29 (m, H-3), 4.73 (dd, J = 4.0, 7.6 Hz, H-9)], and a carboxyl carbon [δ_C 178.2 (C-10)] together with four methylenes, two methines, and a quaternary carbon. As shown in Figure S1 (Supporting Information), the ¹H⁻¹H COSY experiment on **1** indicated the presence of a partial structure, written in bold lines,

and in the HMBC experiment, long-range correlations were observed between the following: H2-2 and C-1; H-6 and C-1; H-9 and C-7, 8, 10; H₃-11 and C-1, 2, 6, 12; H₃-12 and C-1, 2, 6, 11; H_3 -13 and C-4-6. The relative stereostructure of 1 except for the 9-position was characterized by the NOESY experiment, which showed NOE correlations between Hα-2 and H-3, H-6, H₃-12; H-3 and H α -4; H α -4 and H-6, H_3-13; H-6 and H_3-12; and H_2-7 and H₃-11, as shown in Figure S1. Finally, the absolute configuration of 1 was characterized by the application of the modified Mosher's method.³¹ Namely, methyl ester **1a**, which was derived from **1** upon reaction with trimethylsilyldiazomethane (TMSCHN₂), gave the 3-(R)-MTPA ester (1b), 9-(R)-MTPA ester (1d), and 3,9-di-(R)-MTPA ester by treatment with (R)-2-methoxy-2-trifluoromethylphenylacetic acid [(R)-MTPA] in the presence of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC· HCl) and 4-dimethylaminopyridine (4-DMAP). On the other hand, the 3-(S)- and 9-(S)-MTPA esters (1c, 1e) and 3,9-di-(S)-MTPA ester were obtained from 1a using (S)-MTPA in the presence of EDC·HCl and 4-DMAP. As shown in Figure 1, the signals due to protons attached to the 4-, 5-, and 13-positions in the 3-(S)-MTPA ester (1c) were observed at lower fields compared with those of the 3-(*R*)-MTPA ester (1b) [$\Delta\delta$: positive], while the signals due to protons on the 2-, 11-, and 12-positions in 1c were observed at higher fields compared with those of **1b** [$\Delta\delta$: negative]. Thus, the absolute configuration at the 3-position of 1a was determined to be R. The signals due to protons attached to the 5-8- and 11-13-positions in the 9-(S)-MTPA ester (1e) were observed at lower fields compared with those of the 9-(*R*)-MTPA ester (1d) [$\Delta \delta$: positive], while the signal of the 10-carboxy methyl proton in 1e was observed at higher field compared with that of 1d [$\Delta\delta$: negative]. Consequently, the absolute configuration at the 9-position of **1a** was determined to be *R* and the absolute configurations of **1** and 1a were elucidated as shown.

Sarmentol A (2) was obtained as colorless oil ($[\alpha]^{27}$ _D -7.4 in MeOH). The molecular formula, $C_{13}H_{26}O_3$, of 2 was determined from the positive-ion FABMS (m/z 253 [M + Na]⁺) and by HRFABMS. The ¹H (CD₃OD, Table 1) and ¹³C NMR (Table 2) spectra³⁰ of **2** showed signals assignable to three methyls [δ 0.83, 0.96 (both s, H₃-11, 12), 0.98 (d, J = 6.5 Hz, H₃-13)] and a methylene and two methines bearing an oxygen function { δ [3.41 $(dd, J = 6.7, 11.0 \text{ Hz}), 3.46 (dd, J = 4.6, 11.0 \text{ Hz}), H_2-10], 3.53$ (m, H-9), 3.69 (m, H-3)} together with four methylenes, two methines, and a quaternary carbon. The proton and carbon signals in the ¹H and ¹³C NMR spectra of **2** resembled those of **1f**, which was derived from 1a by reduction with sodium borohydride (NaBH₄). As shown in Figure S1, the $^{1}H^{-1}H$ COSY experiment on 2 indicated the partial structure written in bold lines, and the carbon skeleton and the positions of functional groups were characterized by the HMBC experiment, which showed long-range correlations between the following: H₂-2 and C-1; H-3 and C-2,

^{*} To whom correspondence should be addressed. Tel: +81-75-595-4633. Fax: +81-75-595-4768. E-mail: myoshika@mb.kyoto-phu.ac.jp.

[†] Kyoto Pharmaceutical University.

[‡] Pharmaceutical Research and Technology Institute, Kinki University.

[§] School of Pharmacy, Kinki University.

Chart 1

Glc: β-D-glucopyranosyl

Table 1. ¹H NMR (500 MHz) Data of 1 and 2 and Related Compounds (1a and 1f)

	1 ^a	1a ^{<i>a</i>}	1a ^b	1f ^b	2^b	2 ^c
position	$\delta_{\mathrm{H}} \left(J \mathrm{Hz} \right)$	$\delta_{\rm H} \left(J {\rm Hz} \right)$	$\delta_{\mathbf{H}} \left(J \mathrm{Hz} \right)$	$\delta_{\rm H} \left(J {\rm Hz} \right)$	$\delta_{\mathrm{H}} \left(J \mathrm{Hz} \right)$	$\delta_{\mathbf{H}} \left(J \mathrm{Hz} \right)$
2α	1.42 (br dd, ca. 3,	1.42 (br dd, ca. 3,	1.38 (br dd, ca.	1.39 (br dd, ca.	1.10 (dd, 11.9,	1.08 (dd, 11.6,
	14)	14)	3, 15)	3, 14)	11.9)	11.6)
2β	1.81 (m)	1.82 (ddd, 2.0,	1.58 (m)	1.59 (ddd, 2.0,	1.69 (ddd, 2.8, 4.3,	1.63 (m)
		2.0, 14.3)		2.0, 13.7)	11.9)	
3	4.29 (m)	4.29 (m)	4.08 (m)	4.09 (m)	3.76 (m)	3.69 (m)
4α	1.28 (ddd, 2.8,	1.28 (ddd, 2.8,	1.24 (m)	1.24 (m)	0.93 (ddd, 12.2,	0.90 (ddd, 12.1,
	13.2, 14.7)	13.2, 14.7)			12.2, 12.2)	12.1, 12.1)
4β	1.97 (ddd, 3.1, 5.5,	1.97 (ddd, 3.1,	1.75 (ddd, 2.8, 5.5,	1.73 (ddd, 2.8,	1.92 (m)	1.89 (m)
	14.7)	5.5, 14.7)	13.7)	5.5, 13.7)		
5	2.12 (m)	2.13 (m)	1.80 (m)	1.80 (m)	1.46 (m)	1.45 (m)
6	0.78 (ddd, 2.2, 5.8,	0.72 (ddd, 2.1, 5.8,	0.62 (ddd, 2.2, 5.8,	0.62 (ddd, 2.1,	0.55 (ddd, 1.9, 4.9,	0.54 (ddd, 2.1,
	10.8)	10.8)	10.8)	4.6, 9.2)	10.7)	5.2, 12.6)
7	1.72 (m)	1.57 (m)	1.20 (m)	1.31 (m)	1.05 (m)	1.03 (m)
	2.05 (m)	1.94 (m)	1.60 (m)	1.46 (m)	1.57 (m)	1.65 (m)
8	2.19 (m)	2.03 (m)	1.72 (m)	1.37 (m)	1.40 (m)	1.32 (m)
	2.22 (m)	2.15 (m)	1.79 (m)	1.68 (m)	1.55 (m)	1.61 (m)
9	4.73 (dd, 4.0, 7.6)	4.59 (dd, 4.0, 7.7)	4.17 (dd, 4.0, 7.7)	3.69 (m)	3.67 (m)	3.53 (m)
10				3.45 (dd, 5.7, 10.3)	3.44 (dd, 8.2, 11.6)	3.41 (dd, 6.7, 11.0)
				3.66 (dd, 2.3, 10.3)	3.67 (dd, 3.1, 11.6)	3.46 (dd, 4.6, 11.0)
11	1.34 (s)	1.32 (s)	1.02 (s)	1.03 (s)	0.81 (s)	0.83 (s)
12	1.03 (s)	0.99 (s)	0.90 (s)	0.89 (s)	0.95 (s)	0.96 (s)
13	1.07 (d, 6.7)	1.01 (d, 6.7)	0.92 (d, 6.7)	0.95 (d, 6.9)	0.98 (d, 6.5)	0.98 (d, 6.5)
COOMe		3.75 (s)	3.80 (s)			

^{*a*} Measured in pyridine-*d*₅. ^{*b*}Measured in CDCl₃. ^{*c*}Measured in CD₃OD.

4; H-6 and C-1; H₂-8 and C-9, 10; H-9 and C-8, 10; H₂-10 and C-8, 9; H₃-11 and C-1, 2, 6, 12; H₃-12 and C-1, 2, 6, 11; H₃-13 and C-4-6. On the basis of this evidence, the planar structure of 2 was the same as that of 1f. Next, the relative stereostructure of 2 was determined by a NOESY experiment, in which correlations were observed between H α -2 and H-6, H₃-12; H β -2 and H-3; H-3 and H β -4; H α -4 and H-6, H₃-13; H-6 and H₃-12; and H₂-7 and H_3 -11. Finally, the absolute configuration of 2 was clarified by a modified Mosher's method.³¹ As shown in Figure 2, treatment of 2 with pivaloyl chloride in pyridine yielded the 10-pivaloyl and 3,10-dipivaloyl esters (2a, 2b). The 10-pivaloyl ester (2a) selectively gave the 3-MTPA esters (2c, 2d) by steric hindrance due to the 10-pivaloyl group. In contrast, the 9-MTPA esters (2e, 2f) were obtained from 2b in low yields. The protons on the 2-, 11-, and 12-positions of the 3-(S)-MTPA ester (2d) resonated at lower fields than those of the 3-(*R*)-MTPA ester (2c) [$\Delta\delta$: positive], while the protons on the 4-, 5-, and 13-positions of 2d were observed at higher fields compared to those of $2c [\Delta \delta$: negative]. On the other hand,

the 10-proton and pivaloyl methyl protons of the 9-(*S*)-MTPA ester (**2f**) resonated at lower fields than those of the 9-(*R*)-MTPA ester (**2e**) [$\Delta\delta$: positive], while the protons on the 5–8- and 11–13-positions of **2f** were observed at higher fields compared to those of **2e** [$\Delta\delta$: negative]. Consequently, the absolute configurations at the 3- and 9-positions in **2** were elucidated to be 3*S* and 9*S*.

Sedumoside A₁ (**3**) was obtained as an amorphous powder ($[\alpha]^{22}_D$ – 28.3 in MeOH). HRFABMS revealed the molecular formula of **3** to be C₁₉H₃₆O₈, and the IR spectrum showed absorption bands at 3389 and 1078 cm⁻¹, ascribable to hydroxyl and ether functions. The ¹H NMR (pyridine-*d*₅, Table 3) and ¹³C NMR (Table 4) spectra³⁰ of **3** showed the presence of the following functions: three methyls [δ 0.75, 0.92 (both s, H₃-11, 12), 0.92 (d, *J* = 6.1 Hz, H₃-13)], a methylene and two methines bearing an oxygen function { δ [3.52 (dd, *J* = 5.8, 11.9 Hz), 3.65 (dd, *J* = 3.4, 11.9 Hz), H₂-10], 4.05 (m, H-9), 4.12 (m, H-3)}, and a β -glucopyranosyl part [δ 5.02 (d, *J* = 7.6 Hz, H-1')]. The acid hydrolysis of **3** with 1 M HCl liberated D-glucose, which was identified by HPLC analysis

Table 2. ^{13}C NMR (125 MHz) Data of 1 and 2 and Related Compounds (1a and 1f)

	1^{a}	$1a^a$	$\mathbf{1a}^{b}$	$1\mathbf{f}^{b}$	2^b	2^c
position	$\delta_{\mathbf{C}}$	$\delta_{\mathbf{C}}$	$\delta_{\mathbf{C}}$	$\delta_{\mathbf{C}}$	$\delta_{\mathbf{C}}$	$\delta_{\mathbf{C}}$
1	34.8	34.8	34.2	34.2	35.9	36.8
2	48.0	48.0	47.4	47.4	51.0	51.8
3	66.7	66.7	67.8	67.8	66.9	67.3
4	44.4	44.3	43.1	43.1	45.6	46.5
5	29.7	29.7	28.8	28.8	33.6	34.9
6	53.7	53.6	53.1	53.3	52.7	54.2
7	25.5	25.3	24.1	24.9	24.9	26.3
8	37.6	37.3	36.3	35.3	35.5	36.9
9	71.7	71.5	70.7	72.6	72.8	73.9
10	178.2	176.0	175.8	66.9	66.7	67.3
11	23.5	23.5	23.1	23.1	21.0	21.4
12	31.9	31.8	31.4	31.4	30.7	31.3
13	21.2	21.1	20.6	20.8	21.5	21.5
COOMe		51.6	52.5			

^{*a*} Measured in pyridine-*d*₅. ^{*b*} Measured in CDCl₃. ^{*c*} Measured in CD₃OD.

Figure 1.

using an optical rotation detector.^{12,14–16,19–22,24} Enzymatic hydrolysis of **3** with β -glucosidase gave **2** as an aglycon. The position of the β -D-glucopyranosyl moiety in **3** was determined by the HMBC experiment, in which a long-range correlation was observed between the 1'-proton and the 3-carbon. Consequently, the structure of **3** was elucidated as samentol A 3-*O*- β -D-glucopyranoside.

Sedumosides A_2 (4) and A_3 (5) were obtained as amorphous powders (4: $[\alpha]^{27}_{D}$ -6.2; 5: $[\alpha]^{27}_{D}$ -16.9, both in MeOH). The same molecular formula, C₁₉H₃₆O₈, for both 4 and 5 was determined individually from the positive-ion FABMS $(m/z 415 [M + Na]^+)$ and by HRFABMS. Acid hydrolysis of 4 and 5 with 1 M HCl liberated D-glucose. Enzymatic hydrolysis of 4 and 5 with β -glucosidase both gave 2 as the aglycon. The ¹H (pyridine- d_5 , Table 3) and ¹³C NMR (Table 4) spectra³⁰ of 4 and 5 indicated the presence of the following functions: an aglycon part {4: δ 0.83, 0.93 (both s, H₃-11, 12), 0.97 (d, J = 6.2 Hz, H₃-13), 3.79 (2H, m, H₂-10), 3.97 (m, H-3), 4.10 (m, H-9); 5: δ 0.80, 0.94 (both s, H₃-11, 12), $0.96 (d, J = 6.4 Hz, H_3-13)$, [3.89 (dd, J = 8.6, 10.1 Hz), 4.27 (dd, J = 3.7, 10.1 Hz), H₂-10], 4.02 (m, H-3), 4.14 (m, H-9)} and a β-glucopyranosyl part [4: δ 5.12 (d, J = 7.6 Hz, H-1'); 5: δ 5.00 (d, J = 7.6 Hz, H-1')]. In the HMBC experiment of 4, a longrange correlation was observed between the 1'-proton and the 9-carbon, while a long-range correlation in the HMBC experiment of 5 was observed between the 1'-proton and the 10-carbon. Thus, 4 and 5 were elucidated as samentol A 9-O- β -D-glucopyranoside and sarmentol A 10-O- β -D-glucopyranoside, respectively.

Sedumoside B (6), $[\alpha]^{23}_{D}$ –15.7 (MeOH), was also obtained as an amorphous powder. The molecular formula, $C_{19}H_{36}O_8$, of 6 was determined from the positive-ion FABMS and by HRFABMS. The proton and carbon signals in the ¹H (CD₃OD, Table 5) and ¹³C NMR (Table 6) spectra³⁰ of **6** were very similar to those of **4**, except for the signals around the 9-position: three methyls [δ 0.83, 0.96 (both s, H₃-11, 12), 0.99 (d, J = 6.4 Hz, H₃-13)], a methylene and two methines bearing an oxygen function [δ 3.59 (2H, d-like, H₂-10), 3.65 (m, H-9), 3.69 (m, H-3)], and a β -glucopyranosyl part [δ 4.33 (d, J = 8.0 Hz, H-1')]. Acid hydrolysis of **6** liberated D-glucose. The enzymatic hydrolysis of **6** with β -glucosidase gave a new megastigmane, sarmentol B (6a), the 9R isomer of 2, as determined by the chemical correlation with 8 (vide infra). The linkage of the β -D-glucopyranosyl moiety in **6** was clarified by the HMBC experiment, which showed long-range correlation between the 1'proton and 9-carbon (Figure S1). Consequently, 6 was elucidated to be sarmentol B 9-O- β -D-glucopyranoside.

Sedumoside C (7) was obtained as an amorphous powder ($[\alpha]^{27}$ _D -0.8 in MeOH). The IR spectrum of 7 showed absorption bands at 3432, 1702, and 1061 cm⁻¹, ascribable to hydroxyl, carbonyl, and ether functions. The molecular formula, C19H34O8, of 7 was from FABMS (m/z 413 [M + Na]⁺) and HRFABMS. Sedumoside D (8), $[\alpha]^{27}D$ -1.4 (MeOH), was also obtained as an amorphous powder ($C_{19}H_{34}O_8$). Treatment of **7** and **8** with 1 M HCl liberated D-glucose. The ¹H (CD₃OD, Table 5) and ¹³C NMR (Table 6) spectra³⁰ of **7** showed signals assignable to three methyls [δ 0.77, 1.08 (both s, H₃-11, 12), 1.09 (d, J = 6.1 Hz, H₃-13)], a methylene and a methine bearing an oxygen function { δ [3.40 (dd, J = 8.0, 10.5 Hz), 3.93 (dd, J = 3.4, 10.5 Hz), H₂-10], 3.75 (m, H-9)}, and a β -glucopyranosyl moiety [δ 4.28 (d, J = 7.7 Hz, H-1')] together with four methylenes, two methines, and two quaternary carbons including an carbonyl carbon ($\delta_{\rm C}$ 214.2, C-3). The ¹H and ¹³C NMR spectra of 7 were superimposable on those of 5, except for signals due to the 3-position. The ¹H-¹H COSY experiment on 7 indicated the presence of partial structures, written in bold lines, and in the HMBC experiment, long-range correlations were observed between H₂-2 and C-1, 3; H₂-4 and C-3; H-6 and C-1; H-9 and C-7, 8, 10; H₃-11 and C-1, 2, 6, 12; H₃-12 and C-1, 2, 6, 11; H₃-13 and C-4-6; and H-1' and C-10. In the NOESY experiment on 7, NOE correlations were observed between the following: $H\alpha$ -2 and H_3 -12; H β -2 and H₃-11; H α -4 and H-6, H₃-13; H-5 and H₃-11; H-6 and H₃-12; H₂-7 and H₃-11. Enzymatic hydrolysis of 7 with β -glucosidase gave a new megastigmane, sarmentol C (7a), as the aglycon. By the application of the octant rule for 7 and 7a, the absolute configurations of the 5-positions were confirmed to be R. That is, the circular dichroic (CD) spectra of 7 and 7a showed a positive Cotton effect [7: 284 nm ($\Delta \epsilon + 0.08$); 7a: 286 nm ($\Delta \epsilon$ +0.19), both in MeOH].^{25,32} Finally, reduction of 7 with NaBH₄ yielded 5 and 7b in an approximate 7:2 ratio, so that the configuration of the 9-position in 7 was clarified to be S.

The ¹H (CD₃OD, Table 5) and ¹³C NMR (Table 6) spectra³⁰ of 8 indicated the same functional groups as those of 7. Enzymatic hydrolysis of 8 with β -glucosidase gave a new megastigmane, sarmentol D (8a), as the aglycon. The ${}^{1}H-{}^{1}H$ COSY experiment on 8 indicated the partial structures written in bold lines, and the carbon skeleton and the positions of functional groups were determined by the HMBC experiment, which showed long-range correlations between H₂-2 and C-1; H-3 and C-2, 4; H-6 and C-1; H₂-7 and C-9; H₂-8 and C-9; H₂-10 and C-9; H₃-11 and C-1, 2, 6, 12: H₃-12 and C-1, 2, 6, 11: H₃-13 and C-4-6: and H-1' and C-10. Consequently, the β -glucopyranosyl group in 8 was at the 10position of 8a. The relative structure of 8 was characterized by the NOESY experiment, which showed NOE correlations between $H\alpha$ -2 and H-6, H_3 -12; $H\beta$ -2 and H-3; H-3 and $H\beta$ -4; $H\alpha$ -4 and H-6, H₃-13; H-6 and H₃-12, H₃-13; and H₂-7 and H₃-11. The (R)and (S)-MTPA esters (8b, 8c) were obtained from 8a using (R)and (S)-MTPA in the presence of EDC·HCl and 4-DMAP,

Figure 2.

Table 3. ¹H NMR (500 MHz) Data of 3-5

	3 <i>a</i>	3^{b}	4^{a}	4^{b}	5 ^{<i>a</i>}	5 ^b
position	$\delta_{\mathbf{H}} \left(J \mathrm{Hz} \right)$	$\delta_{ m H} \left(J { m Hz} ight)$	$\delta_{ m H} \left(J { m Hz} ight)$	$\delta_{ m H} \left(J { m Hz} ight)$	$\delta_{ m H} \left(J { m Hz} ight)$	$\delta_{ m H} \left(J { m Hz} ight)$
2α	1.29 (dd, 12.2,	1.14 (dd, 11.9,	1.36 (dd, 12.0,	1.08 (dd, 11.9,	1.39 (dd, 12.0,	1.09 (dd, 12.0,
	12.2)	11.9)	12.0)	11.9)	12.0)	12.0)
2β	2.03 (ddd, 1.9, 3.5,	1.79 (ddd, 2.2, 4.1,	1.90 (m)	1.63 (m)	1.92 (ddd, 2.8,	1.64 (ddd, 2.5,
·	12.2)	11.9)			4.5, 12.0)	4.5, 12.0)
3	4.12 (m)	3.84 (m)	3.97 (m)	3.69 (m)	4.02 (m)	3.69 (m)
4α	1.20 (ddd, 11.3,	1.03 (ddd, 12.2,	1.17 (m)	0.91 (ddd, 12.2,	1.21 (ddd, 11.3,	0.90 (ddd, 12.2,
	11.3, 11.3)	12.2, 12.2)		12.2, 12.2)	11.3, 11.3)	12.2, 12.2)
4β	2.21 (m)	2.01 (m)	2.10 (m)	1.89 (m)	2.12 (m)	1.89 (m)
5	1.28 (m)	1.45 (m)	1.35 (m)	1.44 (m)	1.35 (m)	1.43 (m)
6	0.57 (ddd, 2.2,	0.56 (ddd, 2.1,	0.53 (ddd, 2.2,	0.53 (ddd, 2.1,	0.53 (ddd, 2.5,	0.53 (ddd, 2.8,
	4.6, 10.7)	5.2, 11.0)	5.3, 11.7)	5.2, 12.6)	5.0, 11.0)	4.0, 10.7)
7	1.18 (m)	1.03 (m)	1.18 (m)	1.08 (m)	1.16 (m)	1.06 (m)
	1.83 (m)	1.65 (m)	1.89 (m)	1.65 (m)	1.82 (m)	1.63 (m)
8	1.65 (m)	1.33 (m)	1.77 (m)	1.57 (m)	1.60 (m)	1.41 (m)
	1.89 (m)	1.61 (m)	1.85 (m)	1.64 (m)	1.75 (m)	1.57 (m)
9	4.05 (m)	3.52 (m)	4.10 (m)	3.69 (m)	4.14 (m)	3.71 (m)
10	3.52 (dd, 5.8, 11.9)	3.41 (dd, 6.7, 11.0)	3.79 (2H, m)	3.52 (dd, 5.8, 11.9)	3.89 (dd, 8.6, 10.1)	3.37 (dd, 7.8, 10.1)
	3.65 (dd, 3.4, 11.9)	3.46 (dd, 4.3, 11.0)		3.65 (dd, 3.4, 11.9)	4.27 (dd, 3.7, 10.1)	3.92 (dd, 2.7, 10.1)
11	0.75 (s)	0.84 (s)	0.83 (s)	0.83 (s)	0.80 (s)	0.83 (s)
12	0.92 (s)	0.97 (s)	0.93 (s)	0.97 (s)	0.94 (s)	0.96 (s)
13	0.92 (d, 6.1)	0.98 (d, 6.1)	0.97 (d, 6.2)	0.98 (d, 6.5)	0.96 (d, 6.1)	0.97 (d, 6.4)
Glc-1'	5.02 (d, 7.6)	4.34 (d, 7.6)	5.12 (d, 7.6)	4.42 (d, 7.7)	5.00 (d, 7.6)	4.27 (d, 7.6)
2'	4.05 (m)	3.12 (dd, 7.6, 9.2)	4.03 (m)	3.20 (dd, 7.7, 9.2)	4.09 (dd, 7.6, 9.0)	3.21 (dd, 7.6, 9.2)
3'	4.30 (m)	3.35 (dd, 9.2, 9.2)	4.20 (m)	3.33 (dd, 9.2, 9.2)	4.24 (m)	3.33 (m)
4'	4.28 (m)	3.25 (m)	4.19 (m)	3.27 (m)	4.24 (m)	3.27 (m)
5'	4.00 (m)	3.27 (m)	3.90 (m)	3.27 (m)	3.99 (m)	3.25 (m)
6'	4.33 (dd, 4.9, 11.9)	3.65 (dd, 4.9, 11.6)	4.34 (dd, 4.8, 11.6)	3.64 (m)	4.37 (dd, 5.5, 11.9)	3.64 (m)
	4.58 (dd, 3.1, 11.9)	3.86 (dd, 2.1, 11.6)	4.48 (dd, 2.1, 11.6)	3.85 (dd, 2.2, 12.0)	4.56 (br d, ca. 12)	3.86 (dd, 1.6, 10.1)

^{*a*} Measured in pyridine-*d*₅. ^{*b*}Measured in CD₃OD.

respectively. The protons on the 2-, 11-, and 12-positions of the (*S*)-MTPA ester (**8c**) resonated at lower fields than those of the (*R*)-MTPA ester (**8b**) [$\Delta\delta$: positive], while the protons on the 4-, 5-, and 13-positions of **8c** were observed at higher fields compared to those of **8b** [$\Delta\delta$: negative]. Finally, reduction of the 9-carbonyl group in **8** with NaBH₄ gave **5** and its 9-diastereoisomer (**8d**) in an approximate 1:1 ratio. Enzymatic hydrolysis of **8d** with β -glucosidase gave **6a**, and thus the absolute configuration of **6a** was also clarified. On the basis of this evidence, the absolute configurations of **6** and **8** were elucidated to be as shown.

Experimental Section

General Experimental Procedures. The following instruments were used to obtain physical data: specific rotations, Horiba SEPA-300 digital polarimeter (l = 5 cm); CD spectra, JASCO J-720WI spectrometer; UV spectra, Shimadzu UV-1600 spectrometer; IR spectra, Shimadzu FTIR-8100 spectrometer; ¹H NMR spectra, JEOL JNM-

LA500 (500 MHz) spectrometer; ¹³C NMR spectra, JEOL JNM-LA500 (125 MHz) spectrometer with tetramethylsilane as an internal standard; EIMS, CIMS, HREIMS, and HRCIMS, JEOL JMS-GCMATE mass spectrometer; FABMS and HRFABMS, JEOL JMS-SX 102A mass spectrometer; HPLC detector, Shimadzu RID-6A refractive index and SPD-10A UV-vis detectors; HPLC, Cosmosil 5C₁₈-MS-II columns (Nacalai Tesque Inc., 250×4.6 mm i.d. and 250×20 mm i.d. for analytical and preparative purposes, respectively).

The following experimental conditions were used for chromatography: normal-phase silica gel column chromatography (CC), silica gel BW-200 (Fuji Silysia Chemical, Ltd., 150–350 mesh); reversed-phase silica gel CC, Chromatorex ODS DM1020T (Fuji Silysia Chemical, Ltd., 100–200 mesh); Diaion HP-20 CC (Nippon Rensui); Sephadex LH-20 CC (Amersham Biosciences K. K.); preparative TLC, precoated TLC plates with silica gel 60F₂₅₄ (Merck, 0.25 mm) (normal-phase); TLC, precoated TLC plates with silica gel 60F₂₅₄ (Merck, 0.25 mm) (normal-phase) and silica gel RP-18 F₂₅₄₈ (Merck, 0.25 mm) (reversed-phase); reversed-phase HPTLC, precoated TLC plates with silica gel

Table 4. ¹³C NMR (125 MHz) Data of 3-5

	3^{a}	3 ^b 4 ^a		4^{b}	5 ^{<i>a</i>}	5^{b}
position	$\delta_{\mathbf{C}}$	$\delta_{\rm C}$	$\delta_{\mathbf{C}}$	$\delta_{\rm C}$	$\delta_{\mathbf{C}}$	$\delta_{\rm C}$
1	35.8	36.7	36.0	36.8	35.9	36.8
2	48.1	48.4	51.9	51.8	52.1	51.8
3	74.2	75.7	66.0	67.4	66.0	67.4
4	44.3	44.7	46.6	46.5	46.8	46.5
5	33.9	34.9	33.9	34.9	34.0	34.9
6	53.1	54.3	53.3	54.4	53.1	54.2
7	25.7	26.3	25.3	26.1	25.5	26.1
8	36.9	36.9	35.0	35.2	36.5	36.8
9	73.3	73.9	82.8	82.5	71.4	72.4
10	67.5	67.2	65.0	64.8	75.8	75.5
11	21.0	21.3	21.2	21.4	21.3	21.3
12	30.9	31.3	31.0	31.4	31.0	31.4
13	21.1	21.5	21.3	21.5	21.3	21.5
Glc-1'	103.0	102.6	104.5	103.9	105.5	104.8
2'	75.4	75.0	75.7	75.6	75.4	75.2
3'	78.7	78.0	78.4	78.1	78.6	77.9
4'	71.8	71.7	71.7	71.7	71.7	71.6
5'	78.5	77.8	78.2	77.9	78.6	78.0
6'	62.9	62.8	62.8	62.9	62.8	62.7

^{*a*} Measured in pyridine-*d*₅. ^{*b*}Measured in CD₃OD.

RP-18 WF_{254S} (Merck, 0.25 mm); detection was achieved by spraying with 1% $Ce(SO_4)_2-10\%$ aqueous H₂SO₄, followed by heating.

Plant Material. *S. sarmentosum* was cultivated at Huangshan, Anhui Province, China, and plant material was identified by one of the authors (M.Y.). A voucher specimen (2005.01. Eishin-02) of this plant is on file in our laboratory.

Extraction and Isolation. The hot H₂O extract (1950 g) from the fresh whole plant of S. sarmentosum (Huangshan, Anhui Province, China, 1.25% from this herbal medicine) was extracted three times with MeOH under reflux for 3 h. Evaporation of the solvent under reduced pressure provided a MeOH extract (887.5 g, 0.57%), and an aliquot (398.6 g) was subjected to Diaion HP-20 CC (4.0 kg, H₂O \rightarrow MeOH, twice) to give H2O- and MeOH-eluted fractions (305.0 and 93.6 g, respectively). The MeOH-eluted fraction (72.0 g) was subjected to normal-phase silica gel CC [2.0 kg, CHCl3-MeOH-H2O (10:3:0.5 \rightarrow 7:3:1, v/v/v, lower layer) \rightarrow MeOH] to give five fractions [1 (12.1) g), 2 (19.2 g), 3 (10.4 g), 4 (8.7 g), and 5 (16.3 g)]. Fraction 1 (12.1 g) was subjected to reversed-phase silica gel CC [300 g, MeOH-H2O $(5:95 \rightarrow 10:90 \rightarrow 20:80 \rightarrow 30:70 \rightarrow 50:50 \rightarrow 70:30, v/v) \rightarrow MeOH$ to afford 13 fractions [1-1 (550 mg), 1-2 (980 mg), 1-3 (1460 mg), 1-4 (1230 mg), 1-5 (1510 mg), 1-6 (1800 mg), 1-7 (540 mg), 1-8 (600 mg), 1-9 (710 mg), 1-10 (220 mg), 1-11 (1170 mg), 1-12 (1030 mg), and 1-13 (150 mg)]. Fraction 1-5 (1510 mg) was purified by Sephadex LH-20 CC [150 g, CHCl3-MeOH (1:1, v/v)] and finally HPLC [MeOH-H₂O (35:65, v/v)] to furnish sarmentol A (2, 125.8 mg, 0.00023%). Fraction 1-7 (540 mg) was purified by Sephadex LH-20 CC [150 g, CHCl₃-MeOH (1:1, v/v)] and finally HPLC [MeOH-H₂O (40:60, v/v)] to furnish myrsinionoside A (11, 48.5 mg, 0.00009%). Fraction 1-9 (710 mg) was purified by Sephadex LH-20 CC [150 g, CHCl₃-MeOH (1:1, v/v)] and finally HPLC [MeOH-H₂O (50:50, v/v)] to furnish (3S,5R,6S,9R)-megastigmane-3,9-diol (9, 14.8 mg, 0.00003%). Fraction 2 (19.2 g) was subjected to reversed-phase silica gel CC [600 g, MeOH-H₂O (20:80 \rightarrow 30:70 \rightarrow 40:60 \rightarrow 70:30, v/v) \rightarrow MeOH] to afford 12 fractions [2-1 (200 mg), 2-2 (4630 mg), 2-3 (1160 mg), 2-4 (1950 mg), 2-5 (3300 mg), 2-6 (650 mg), 2-7 (700 mg), 2-8 (1800 mg), 2-9 (810 mg), 2-10 (1360 mg), 2-11 (2270 mg), and 2-12 (770 mg)]. Fraction 2-4 (1950 mg) was subjected to normal-phase silica gel CC [100 g, CHCl₃ \rightarrow CHCl₃-MeOH (50:1 \rightarrow 20:1 \rightarrow 10:1, v/v) -CHCl₃-MeOH-H₂O (20:3:1, v/v/v, lower layer) \rightarrow MeOH] to give seven fractions [2-4-1 (90.5 mg), 2-4-2 (50.1 mg), 2-4-3 (284.0 mg), 2-4-4 (153.8 mg), 2-4-5 (348.2 mg), 2-4-6 (721.1 mg), and 2-4-7 (300.0 mg)]. Fraction 2-4-5 (348.2 mg) was further purified by HPLC [CH₃-CN-MeOH-H₂O (10:8:82, v/v/v) and MeOH-H₂O (30:70 or 32:68, v/v)] to furnish sedumoside D (8, 43.0 mg, 0.00008%), staphylionoside D (10, 3.2 mg, 0.00001%), and 3-hydroxy-5,6-epoxy-β-ionol 9-O-β-D-glucopyranoside (15, 22.0 mg, 0.00004%). Fraction 2-4-6 (721.1 mg) was further purified by HPLC [MeOH-H₂O (32:68, v/v)] to give sedumosides A1 (3, 162.5 mg, 0.00030%), A2 (4, 60.6 mg, 0.00011%), A₃ (5, 29.2 mg, 0.00005%), and B (6, 3.2 mg, 0.00001%) and alangioside A (13, 52.8 mg, 0.00010%). Fraction 2-5 (3300 mg) was

further separated by HPLC [CH₃CN-H₂O (15:85, v/v)] to furnish 3 (34.0 mg, 0.00006%), **4** (838.6 mg, 0.0016%), **5** (200.9 mg, 0.00024%), sedumoside C (7, 24.1 mg, 0.00005%), and 8 (220.5 mg, 0.00041%). Fraction 2-8 (1800 mg) was purified by Sephadex LH-20 CC [150 g, CHCl₃-MeOH (1:1, v/v)] and finally HPLC [CH₃CN-MeOH-H₂O (20:8:72, v/v/v) and MeOH-H₂O (40:60, v/v)] to furnish sarmentoic acid (1, 429.8 mg, 0.00080%), 1a (24.5 mg, 0.00005%), and alangioside J (14, 80.9 mg, 0.00015%). Fraction 2-10 (1360 mg) was further separated by HPLC [CH₃CN-MeOH-H₂O (20:8:72, v/v/v) and CHCl₃-MeOH (40:60, v/v)] to furnish myrsinionoside D (12, 182.1 mg, 0.00034%) and 14 (21.2 mg, 0.00004%). Fraction 3 (10.4 g) was subjected to reversed-phase silica gel CC [240 g, MeOH-H₂O (10:90 \rightarrow 20:80 \rightarrow 30:70 \rightarrow 40:60, v/v) \rightarrow MeOH] to afford 14 fractions [3-1 (123.0 mg), 3-2 (675.1 mg), 3-3 (574.8 mg), 3-4 (1337 mg), 3-5 (797.8 mg), 3-6 (798.6 mg), 3-7 (230.3 mg), 3-8 (901.2 mg), 3-9 (645.6 mg), 3-10 (256.4 mg), 3-11 (511.7 mg), 3-12 (1238 mg), 3-13 (473.1 mg), and 3-14 (1320 mg)]. Fraction 3-9 (645.6 mg) was purified by Sephadex LH-20 CC [150 g, CHCl3-MeOH (1:1, v/v)] and finally HPLC [MeOH-H₂O (32:68, v/v)] to give plantaninoside D (16, 17.7 mg, 0.00003%). The known compounds were identified by comparison of their physical data ([a]_D, IR, ¹H NMR, ¹³C NMR, MS] with reported values.25-29

Sarmentoic acid (1): amorphous powder; $[\alpha]^{27}_{D}$ -3.3 (*c* 1.02, MeOH); IR (KBr) ν_{max} 3364, 2971, 2922, 2512, 1713, 1470, 1294, 1267, 1192, 1113, 1080, 1042, 948, 793, 650 cm⁻¹; ¹H NMR data, see Table 1; ¹³C NMR data, see Table 2; positive-ion FABMS *m/z* 267 [M + Na]⁺; HRFABMS *m/z* 267.1579 (calcd for C₁₃H₂₄O₄Na [M + Na]⁺, 267.1572).

Sarmentol A (2): colorless oil; $[\alpha]^{27}_{\rm D} - 7.4$ (*c* 0.10, MeOH); IR (film) $\nu_{\rm max}$ 3389, 2926, 2874, 1472, 1387, 1026, 756 cm⁻¹; ¹H NMR data, see Table 1; ¹³C NMR data, see Table 2; positive-ion FABMS *m*/*z* 253 [M + Na]⁺; HRFABMS *m*/*z* 253.1774 (calcd for C₁₃H₂₆O₃Na [M + Na]⁺, 253.1780).

Sedumoside A₁ **(3):** amorphous powder; $[\alpha]^{22}_{D} - 28.3$ (*c* 1.64, MeOH); IR (KBr) ν_{max} 3389, 2930, 2876, 1474, 1368, 1163, 1078, 1022 cm⁻¹; ¹H NMR data, see Table 3; ¹³C NMR data, see Table 4; positive-ion FABMS *m*/*z* 415 [M + Na]⁺; HRFABMS *m*/*z* 415.2313 (calcd for C₁₉H₃₆O₈Na [M + Na]⁺, 415.2308).

Sedumoside A₂ (4): amorphous powder; $[\alpha]^{27}_{D}$ -6.2 (*c* 1.69, MeOH); IR (KBr) ν_{max} 3410, 2918, 1508, 1474, 1377, 1165, 1076, 1022 cm⁻¹; ¹H NMR data, see Table 3; ¹³C NMR data, see Table 4; positive-ion FABMS *m*/*z* 415 [M + Na]⁺; HRFABMS *m*/*z* 415.2313 (calcd for C₁₉H₃₆O₈Na [M + Na]⁺, 415.2308).

Sedumoside A₃ (5): amorphous powder; $[\alpha]^{27}_{D} - 16.9$ (*c* 0.95, MeOH); IR (KBr) ν_{max} 3389, 2940, 1561, 1522, 1474, 1175, 1085, 1032 cm⁻¹; ¹H NMR data, see Table 3; ¹³C NMR data, see Table 4; positive-ion FABMS *m*/*z* 415 [M + Na]⁺; HRFABMS *m*/*z* 415.2303 (calcd for C₁₉H₃₆O₈Na [M + Na]⁺, 415.2308).

Sedumoside B (6): amorphous powder; $[\alpha]^{23}_{D} - 15.7$ (*c* 0.16, MeOH); IR (KBr) ν_{max} 3390, 2928, 2876, 1474, 1078, 1022 cm⁻¹; ¹H NMR data, see Table 5; ¹³C NMR data, see Table 6; positive-ion FABMS *m*/*z* 415 [M + Na]⁺; HRFABMS *m*/*z* 415.2313 (calcd for C₁₉H₃₆O₈Na [M + Na]⁺, 415.2308).

Sedumoside C (7): amorphous powder; $[α]^{27}_D - 0.8$ (*c* 0.82, MeOH); CD (MeOH) λ_{max} (Δ ϵ) 284 (+0.08); IR (KBr) ν_{max} 3432, 2958, 1702, 1653, 1474, 1100, 1061 cm⁻¹; ¹H NMR data, see Table 5; ¹³C NMR data, see Table 6; positive-ion FABMS m/z 413 [M + Na]⁺; HRFABMS m/z 413.2153 (calcd for C₁₉H₃₄O₈Na [M + Na]⁺, 413.2151).

Sedumoside D (8): amorphous powder; $[α]^{27}_D$ – 1.4 (*c* 2.01, MeOH); IR (KBr) ν_{max} 3432, 2961, 1719, 1655, 1647, 1561, 1541, 1474, 1079, 1051 cm⁻¹; ¹H NMR data, see Table 5; ¹³C NMR data, see Table 6; positive-ion FABMS *m/z* 413 [M + Na]⁺; HRFABMS *m/z* 413.2147 (calcd for C₁₉H₃₄O₈Na [M + Na]⁺, 413.2151).

Methylation of 1.¹⁸ A solution of **1** (20.0 mg) in Et₂O-MeOH (1: 1, v/v, 1.0 mL) was treated with trimethylsilyldiazomethane (TM-SCHN₂, 10% in hexane, ca. 0.3 mL), and the whole was stirred at room temperature for 16 h. Removal of the solvent under reduced pressure furnished a residue, which was purified by normal-phase silica gel CC [2.0 g, hexane \rightarrow hexane-CHCl₃ (1:1, v/v) \rightarrow CHCl₃] to give **1a** (18.0 mg, 85%).

Compound 1a: colorless oil; $[\alpha]^{27}_{D}$ –6.4 (*c* 2.01, MeOH); IR (film) ν_{max} 3432, 2953, 2940, 1717, 1541, 1472, 1259, 1165, 1076, 1038, 899, 752 cm⁻¹; ¹H NMR data, see Table 1; ¹³C NMR data, see Table 2; EIMS *m*/*z* 258 [M]⁺ (1), 240 (8), 225 (20), 123 (100); HREIMS *m*/*z* 258.1825 (calcd for C₁₄H₂₆O₄, 258.1831).

Table 5. ¹H NMR (500 MHz) Data of 6-8 and Related Compounds (6a-8a and 8d)

	6 ^{<i>a</i>} 6 <i>a</i>		6a ^b	7^{a}	$7\mathbf{a}^b$	
position	$\delta_{\mathrm{H}} \left(J \mathrm{Hz} \right)$	$\delta_{\mathbf{H}} \left(J \mathrm{Hz} \right)$	$\delta_{\mathbf{H}} \left(J \mathrm{Hz} \right)$	$\delta_{\mathbf{H}} \left(J \mathrm{Hz} \right)$	$\delta_{\mathbf{H}} \left(J \mathrm{Hz} \right)$	
2α	1.08 (dd, 11.6, 11.6)	1.09 (dd, 11.9, 11.9)	1.10 (dd, 11.9, 11.9)	2.38 (d, 13.2)	2.28 (d, 13.1)	
2β	1.64 (m)	1.64 (ddd, 2.5,	1.64 (ddd, 2.5,	1.97 (dd, 2.4, 13.2)	2.07 (dd, 2.5, 13.1)	
		4.3, 11.9)	4.3, 11.9)			
3	3.69 (m)	3.69 (m)	3.77 (m)			
4α	0.92 (ddd, 12.2,	0.90 (ddd, 12.2,	0.93 (ddd, 12.1,	2.15 (ddd, 0.9,	2.04 (m)	
10	12.2, 12.2)	12.2, 12.2)	12.1, 12.1)	14.1, 14.1) 2.21 (ddd 2.4	2 21 (444 2 5	
4p	1.88 (m)	1.88 (m)	1.92 (m)	2.21 (ddd, 2.4, 4.6, 14.1)	2.51 (aad, 2.5, 4.6, 14.1)	
5	1.44 (m)	1.45 (m)	1.45 (m)	4.0, 14.1	(4.0, 14.1) 1.81 (m)	
6	0.53 (ddd - 3.1)	0.54 (ddd 2.7)	0.54 (ddd 2.5)	1.76 (m)	1.01 (m) 1.09 (m)	
0	4 9, 11.3)	5.8, 11.3)	5.2. 11.0)	4 9, 11, 3)	1.07 (11)	
7	1.32 (m)	1.28 (m)	1.24 (m)	1.20 (m)	1.17 (m)	
	1.47 (m)	1.47 (m)	1.46 (m)	1.67 (m)	1.65 (m)	
8	1.50 (m)	1.49 (2H, m)	1.37 (m)	1.47 (m)	1.51 (m)	
	1.69 (m)		1.58 (m)	1.65 (m)	1.63 (m)	
9	3.65 (m)	3.53 (m)	3.69 (m)	3.75 (m)	3.73 (m)	
10	3.59 (2H, d-like)	3.42 (dd, 6.4, 11.0)	3.47 (dd, 6.4, 11.0)	3.40 (dd, 8.0, 10.5)	3.47 (dd, 8.0, 11.0)	
		3.45 (dd, 4.6, 11.0)	3.66 (dd, 4.6, 11.0)	3.93 (dd, 3.4, 10.5)	3.69 (dd, 3.3, 11.0)	
11	0.83 (s)	0.83 (s)	0.81 (s)	0.77 (s)	0.78 (s)	
12	0.96 (s)	0.96 (s)	0.95 (s)	1.08 (s)	1.06 (s)	
13	0.99 (d, 6.4)	0.99 (d, 6.4)	0.97 (d, 6.4)	1.09 (d, 6.1)	1.07 (d, 6.1)	
Glc-1'	4.33 (d, 8.0)			4.28 (d, 7.7)		
2'	3.19 (dd, 8.0, 9.2)			3.22 (dd, 7.7, 9.5)		
3	3.33 (dd, 9.2, 9.2)			3.36 (dd, 8.9, 9.5)		
4	3.28 (m)			3.26 (m)		
5	3.28 (m)			3.28 (m)		
0	5.04 (m) 2.86 (dd 2.2, 12.0)			3.00 (dd, 4.9, 11.9)		
	5.60 (dd, 2.2, 12.0)			5.84 (dd, 1.0, 11.9)		
	8 ^a	8 ^c	$\mathbf{8a}^{a}$	$8a^b$	8d ^b	
position	$\delta_{\rm H} (J {\rm Hz})$	$\delta_{\mathrm{H}} \left(J \mathrm{Hz} \right)$	$\delta_{\mathbf{H}} \left(J \mathrm{Hz} \right)$	$\delta_{ m H} \left(J { m Hz} ight)$	$\frac{1}{\delta_{\mathbf{H}} \left(J \mathrm{Hz} \right)}$	
position	$\frac{\delta_{\rm H} (J {\rm Hz})}{1.09 ({\rm dd}, 11.9, 11.9)}$	$\delta_{\rm H} (J {\rm Hz})$ 1.36 (dd, 12.2, 12.2)	$\frac{\delta_{\rm H} (J{\rm Hz})}{1.09 ({\rm dd}, 12.0, 12.0)}$	$\delta_{\rm H} (J {\rm Hz})$ 1.11 (dd, 11.9, 11.9)	$\frac{1}{\delta_{\rm H} (J \rm Hz)}$ 1.09	
$\frac{2\alpha}{2\beta}$	$\frac{\delta_{\rm H} (J {\rm Hz})}{1.09 ({\rm dd}, 11.9, 11.9)}$ 1.64 (ddd, 2.4,	$\hline \hline $	$\hline \hline $	δ _H (<i>J</i> Hz) 1.11 (dd, 11.9, 11.9) 1.70 (ddd, 2.8, 4.3, 1	$ \frac{1.09}{1.9} = \frac{1.02}{1.09} $	
$\frac{2\alpha}{2\beta}$	$\frac{\delta_{\rm H} (J {\rm Hz})}{1.09 ({\rm dd}, 11.9, 11.9)}$ 1.64 (ddd, 2.4, 4.0, 11.9)	$\hline \hline $	$\hline \hline $	$\frac{\delta_{\mathbf{H}} (J \mathrm{Hz})}{1.11 (\mathrm{dd}, 11.9, 11.9)}$ 1.70 (ddd, 2.8, 4.3, 1	$ \frac{1.09}{1.9} = \frac{1.09}{1.64} $	
$\frac{2\alpha}{2\beta}$	$\hline \hline $	$\hline \hline $	$\hline \hline $	$\frac{\delta_{\rm H} (J {\rm Hz})}{1.11 ({\rm dd}, 11.9, 11.9)}$ 1.70 (ddd, 2.8, 4.3, 1 3.76 (m)		
$\frac{2\alpha}{2\beta}$ $\frac{3}{4\alpha}$	$\hline \hline $	$\hline \hline $	$\hline \hline $	$\frac{\delta_{\rm H} (J {\rm Hz})}{1.11 ({\rm dd}, 11.9, 11.9)}$ 1.70 (ddd, 2.8, 4.3, 1 3.76 (m) 0.94 (ddd, 11.9, 11.9)		
$\frac{2\alpha}{2\beta}$ $\frac{3}{4\alpha}$	$\hline \hline $	$\hline \hline $	$\hline \hline $	$\frac{\delta_{\rm H} (J{\rm Hz})}{1.11 ({\rm dd},11.9,11.9)}$ 1.70 (ddd, 2.8, 4.3, 1 3.76 (m) 0.94 (ddd, 11.9, 11.9, 11.9) 1.94 (m)	$ \frac{1.09}{1.9} \frac{1.09}{1.64} $	
$\begin{array}{c} \begin{array}{c} \text{position} \\ 2\alpha \\ 2\beta \\ 3 \\ 4\alpha \\ 4\beta \\ 5 \end{array}$	$\hline \hline $	$\hline \hline $	$\hline \hline $	$\frac{\delta_{\rm H} (J {\rm Hz})}{1.11 ({\rm dd}, 11.9, 11.9)}$ 1.70 (ddd, 2.8, 4.3, 1 3.76 (m) 0.94 (ddd, 11.9, 11.9) 1.94 (m) 1.94 (m) 1.48 (m)		
$\begin{array}{c} \begin{array}{c} \text{position} \\ 2\alpha \\ 2\beta \\ 3 \\ 4\alpha \\ 4\beta \\ 5 \\ 6 \end{array}$	$\hline \hline $	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		
$\begin{array}{c} \text{position} \\ 2\alpha \\ 2\beta \\ 3 \\ 4\alpha \\ 4\beta \\ 5 \\ 6 \end{array}$	$\hline \hline $	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\hline \hline $	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{r} \hline \hline$	
$\begin{array}{c} \begin{array}{c} \text{position} \\ 2\alpha \\ 2\beta \\ 3 \\ 4\alpha \\ 4\beta \\ 5 \\ 6 \\ 7 \end{array}$	$\hline \hline $	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\hline \hline $	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		
$\begin{array}{c} \text{position} \\ 2\alpha \\ 2\beta \\ 3 \\ 4\alpha \\ 4\beta \\ 5 \\ 6 \\ 7 \end{array}$	$\hline \hline $	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c }\hline\hline\hline\\\hline\\\hline\\\hline\\\hline\\\hline\\\hline\\\hline\\\hline\\\hline\\\hline\\\hline\\\hline\\\hline\\\hline\\\hline\\\hline\\\hline\\$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{r} \hline \hline \\ $	
$\begin{array}{c} \text{position} \\ 2\alpha \\ 2\beta \\ 3 \\ 4\alpha \\ 4\beta \\ 5 \\ 6 \\ 7 \\ 8 \end{array}$	$\hline \hline $	$\begin{tabular}{ c c c c c c c }\hline\hline\hline&\hline\\\hline&\hline\\\hline&\hline\\\hline&\hline\\\hline&1.36 (dd, 12.2, 12.2)\\1.91 (ddd, 2.5, 4.3, 12.2)\\3.97 (m)\\1.16 (ddd, 12.1, 12.1)\\2.08 (m)\\1.35 (m)\\0.53 (ddd, 12.1, 12.1)\\2.08 (m)\\1.35 (m)\\0.53 (ddd, 2.7, 5.2, 11.0)\\1.41 (m)\\1.80 (m)\\2.64 (ddd, 5.8, 12.1)\\0.53 (ddd, 5.8, 12.1)\\0.5$	$\hline \hline $	$\hline \hline $	$\begin{array}{c c} \hline & \hline & \hline & \\ \hline & & \hline & \\ \hline & & \\ \hline & & \\ \hline & & \\ 1.9 \end{pmatrix} & \begin{array}{c} 1.09 \\ 1.64 \\ \hline & \\ 3.69 \\ 0.90 \\ \hline & \\ 1.89 \\ 1.43 \\ 0.54 \\ \hline & \\ 1.26 \\ 1.46 \\ 1.48 \end{array}$	
$\begin{array}{c} \text{position} \\ 2\alpha \\ 2\beta \\ 3 \\ 4\alpha \\ 4\beta \\ 5 \\ 6 \\ 7 \\ 8 \end{array}$	$\hline \hline $	$\begin{tabular}{ c c c c c c c }\hline\hline\hline&\hline\\\hline&\hline\\\hline&\hline\\\hline&\hline\\\hline&1.36 (dd, 12.2, 12.2)\\1.91 (ddd, 2.5, 4.3, 12.2)\\3.97 (m)\\1.16 (ddd, 12.1, 12.1)\\2.08 (m)\\1.35 (m)\\0.53 (ddd, 12.1, 12.1)\\2.08 (m)\\1.35 (m)\\0.53 (ddd, 2.7, 5.2, 11.0)\\1.41 (m)\\1.80 (m)\\2.64 (ddd, 5.8, 11.3, 17.7)\\\hline\hlineend{tabular}$	$\begin{tabular}{ c c c c c c c }\hline\hline\hline\\ \hline\hline\\ \hline\\ \hline$	$\hline \hline $	$\begin{array}{c c} \hline & \hline & \hline & \\ \hline & & \hline & \\ \hline & & \\ \hline & & \\ \hline & & \\ 1.9 \end{pmatrix} & \begin{array}{c} 1.09 \\ 1.64 \\ \hline & \\ 3.69 \\ 0.90 \\ \hline & \\ 1.89 \\ 1.43 \\ 0.54 \\ \hline & \\ 1.43 \\ 0.54 \\ \hline & \\ 1.26 \\ 1.46 \\ 1.48 \\ \end{array}$	
$\begin{array}{c} \text{position} \\ 2\alpha \\ 2\beta \\ 3 \\ 4\alpha \\ 4\beta \\ 5 \\ 6 \\ 7 \\ 8 \end{array}$	$\hline \hline $	$\begin{tabular}{ c c c c c c c }\hline\hline\hline&\hline\\\hline&\hline\\\hline&\hline\\\hline&\hline\\\hline&1.36 (dd, 12.2, 12.2)\\1.91 (ddd, 2.5, 4.3, 12.2)\\3.97 (m)\\1.16 (ddd, 12.1, 12.1)\\1.16 (ddd, 12.1, 12.1)\\2.08 (m)\\1.35 (m)\\0.53 (ddd, 2.7, 5.2, 11.0)\\1.35 (m)\\0.53 (ddd, 2.7, 5.2, 11.0)\\1.41 (m)\\1.80 (m)\\2.64 (ddd, 5.8, 11.3, 17.7)\\2.70 (ddd, 5.8, 11.3, 17.$	$\begin{tabular}{ c c c c c c }\hline\hline\hline\\ \hline\delta_{\rm H}(J{\rm Hz})\\\hline\hline\\ 1.09(dd,12.0,12.0)\\1.64(ddd,2.5,\\4.0,12.0)\\3.69(m)\\0.91(ddd,11.9,\\11.9,11.9)\\1.88(m)\\1.35(m)\\0.59(ddd,2.5,\\5.2,10.7)\\1.48(m)\\1.74(m)\\2.43(ddd,6.1,10.4,\\16.8)\\2.54(ddd,5.2,11.0,\\\hlineend{tabular}$	$\hline \hline $	$\begin{array}{c c} \hline & \hline & \hline & \\ \hline & & \hline & \\ \hline & & \\ \hline & & \\ \hline & & \\ 1.9 \end{pmatrix} & \begin{array}{c} 1.09 \\ 1.64 \\ \hline & \\ 3.69 \\ 0.90 \\ \hline & \\ 1.89 \\ 1.43 \\ 0.54 \\ \hline & \\ 1.43 \\ 0.54 \\ \hline & \\ 1.26 \\ 1.46 \\ 1.48 \\ \hline & \\ 1.57 \end{array}$	
$\frac{2\alpha}{2\beta}$ $\frac{3}{4\alpha}$ $\frac{4\beta}{5}$ $\frac{5}{6}$ $\frac{7}{8}$	$\hline \hline $	$\begin{tabular}{ c c c c c c c }\hline\hline\hline&\hline\\\hline&\hline\\\hline&\hline\\\hline&\hline\\\hline&\hline\\\hline&1.36 (dd, 12.2, 12.2)\\1.91 (ddd, 2.5, 4.3, 12.2)\\3.97 (m)\\1.16 (ddd, 12.1, 12.1)\\1.16 (ddd, 12.1, 12.1)\\2.08 (m)\\1.35 (m)\\0.53 (ddd, 2.7, 5.2, 11.0)\\1.35 (m)\\0.53 (ddd, 2.7, 5.2, 11.0)\\1.41 (m)\\1.80 (m)\\2.64 (ddd, 5.8, 11.3, 17.7)\\2.70 (ddd, 5.8, 11.5, 17.7)\\\end{tabular}$	$\begin{tabular}{ c c c c c c c }\hline\hline\hline\\ \hline\delta_{\rm H}(J{\rm Hz})\\\hline\hline\\ 1.09(dd,12.0,12.0)\\1.64(ddd,2.5,\\4.0,12.0)\\3.69(m)\\0.91(ddd,11.9,\\11.9,11.9)\\1.88(m)\\1.35(m)\\0.59(ddd,2.5,\\5.2,10.7)\\1.48(m)\\1.74(m)\\2.43(ddd,6.1,10.4,\\16.8)\\2.54(ddd,5.2,11.0,\\16.8)\\\hline\hline\end{array}$	$\hline \hline $	$\begin{array}{c c} \hline & \hline & \hline & \\ \hline & & \hline & \\ \hline & & \\ \hline & & \\ \hline & & \\ 1.9 \end{pmatrix} & \begin{array}{c} 1.09 \\ 1.64 \\ \hline & \\ 3.69 \\ 0.90 \\ \hline & \\ 1.89 \\ 1.43 \\ 0.54 \\ \hline & \\ 1.26 \\ 1.46 \\ 1.48 \\ \hline & \\ 1.57 \end{array}$	
$\begin{array}{c} \text{position} \\ 2\alpha \\ 2\beta \\ 3 \\ 4\alpha \\ 4\beta \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ \end{array}$	$\hline \hline $	$\hline \hline $	$\hline \hline $	$\hline \hline $	$ \begin{array}{c c} \hline \hline$	
$\begin{array}{c} \text{position} \\ 2\alpha \\ 2\beta \\ 3 \\ 4\alpha \\ 4\beta \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ \end{array}$	$\hline \hline $	$\hline \hline $	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\hline \hline $	$ \begin{array}{c c} \hline \hline$	
$\begin{array}{c} \text{position} \\ 2\alpha \\ 2\beta \\ 3 \\ 4\alpha \\ 4\beta \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ \end{array}$	$\hline \hline $	$\hline \hline $	$\hline \hline $	$\hline \hline $	$\begin{array}{c c} \hline & \hline & \hline & \\ \hline & & \hline & \\ \hline & & \\ \hline & & \\ \hline & & \\ 1.9 \end{pmatrix} & \begin{array}{c} 1.09 \\ 1.64 \\ \hline & \\ 3.69 \\ 0.90 \\ \hline & \\ 1.89 \\ 1.43 \\ 0.54 \\ \hline & \\ 1.26 \\ 1.46 \\ 1.48 \\ \hline & \\ 1.57 \\ \hline & \\ \hline & \\ 3.58 \\ 3.77 \\ 0.92 \\ \hline \end{array}$	
$\begin{array}{c} \text{position} \\ 2\alpha \\ 2\beta \\ 3 \\ 4\alpha \\ 4\beta \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ \end{array}$	$\hline \hline $	$\hline \hline $	$\hline \hline $	$\hline \hline $	$\begin{array}{c c} \hline & \hline & \hline & \\ \hline & & \hline & \\ \hline & & \hline & \\ \hline & & \\ \hline & & \\ 1.9 \end{pmatrix} & \begin{array}{c} 1.09 \\ 1.64 \\ \hline & \\ 3.69 \\ 0.90 \\ \hline & \\ 1.89 \\ 1.43 \\ 0.54 \\ \hline & \\ 1.26 \\ 1.46 \\ 1.48 \\ \hline & \\ 1.57 \\ \hline & \\ 3.58 \\ 3.77 \\ 0.83 \\ 0.96 \\ \hline \end{array}$	
$\begin{array}{c} \text{position} \\ 2\alpha \\ 2\beta \\ 3 \\ 4\alpha \\ 4\beta \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ \end{array}$	$\hline \hline $	$\hline \hline $	$\hline \hline $	$\hline \hline $	$\begin{array}{c c} \hline & \hline & \hline & \\ \hline & & \hline & \\ \hline & & \hline & \\ \hline & & \\ \hline & & \\ \hline & & \\ 1.9 \end{pmatrix} & \begin{array}{c} 1.09 \\ 1.09 \\ 1.64 \\ \hline & \\ 3.69 \\ 0.90 \\ \hline & \\ 1.89 \\ 1.43 \\ 0.54 \\ \hline & \\ 1.26 \\ 1.46 \\ 1.48 \\ \hline & \\ 1.57 \\ \hline & \\ \hline & \\ 3.58 \\ 3.77 \\ 0.83 \\ 0.96 \\ 0.90 \\ \hline & \\ 0.90 \end{array}$	
$\begin{array}{c} \text{position} \\ 2\alpha \\ 2\beta \\ 3 \\ 4\alpha \\ 4\beta \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ Glc 1' \end{array}$	$\hline \hline $	$\hline \hline $	$\begin{tabular}{ c c c c c }\hline\hline\\\hline\\\hline\\\hline\\\hline\\\hline\\\hline\\\hline\\\hline\\\hline\\\hline\\\hline\\\hline\\\hline\\\hline\\\hline\\\hline\\\hline\\\hline$	$\hline \hline $	$\begin{array}{c c} \hline & \hline & \hline & \\ \hline & & \hline & \\ \hline & & \hline & \\ \hline & & \\ \hline & & \\ \hline & & \\ 1.9 \end{pmatrix} & \begin{array}{c} 1.09 \\ 1.09 \\ 1.64 \\ \hline & \\ 3.69 \\ 0.90 \\ \hline & \\ 1.89 \\ 1.43 \\ 0.54 \\ \hline & \\ 1.26 \\ 1.46 \\ 1.48 \\ \hline & \\ 1.57 \\ \hline & \\ \hline & \\ 3.58 \\ 3.77 \\ 0.83 \\ 0.96 \\ 0.99 \\ 4.27 \\ \end{array}$	
$\begin{array}{c} \text{position} \\ 2\alpha \\ 2\beta \\ 3 \\ 4\alpha \\ 4\beta \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ \text{Glc-1'} \\ 2' \\ \end{array}$	$\hline \hline $	$\hline \hline $	$\begin{tabular}{ c c c c c c c }\hline\hline & $\delta_{\rm H}\ (J{\rm Hz})$\\\hline\hline $1.09\ ({\rm dd},\ 12.0,\ 12.0)$\\\hline $1.64\ ({\rm ddd},\ 2.5,$\\\hline $4.0,\ 12.0)$\\\hline $3.69\ ({\rm m})$\\\hline $0.91\ ({\rm ddd},\ 11.9,$\\\hline $11.9,\ 11.9,$\\\hline $1.88\ ({\rm m})$\\\hline $1.35\ ({\rm m})$\\\hline $0.59\ ({\rm ddd},\ 2.5,$\\\hline $5.2,\ 10.7)$\\\hline $1.48\ ({\rm m})$\\\hline $1.74\ ({\rm m})$\\\hline $2.43\ ({\rm ddd},\ 6.1,\ 10.4,$\\\hline $16.8)$\\\hline $2.54\ ({\rm ddd},\ 5.2,\ 11.0,$\\\hline $16.8)$\\\hline\hline $4.17\ (2{\rm H},\ {\rm s})$\\\hline $0.83\ ({\rm s})$\\\hline $0.97\ ({\rm d},\ 6.4)$\\\hline \end{tabular}$	$\hline \hline $	$\begin{array}{c c} \hline & \hline $	
$\begin{array}{c} \text{position} \\ 2\alpha \\ 2\beta \\ 3 \\ 4\alpha \\ 4\beta \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ \text{Glc-1'} \\ 2' \\ 3' \\ \end{array}$	$\hline \hline $	$\hline \hline $	$\begin{tabular}{ c c c c c c c }\hline\hline & $\delta_{\rm H}\ (J{\rm Hz})$\\\hline\hline $1.09\ (dd,\ 12.0,\ 12.0)$\\\hline $1.64\ (ddd,\ 2.5,$\\\hline $4.0,\ 12.0)$\\\hline $3.69\ (m)$\\\hline $0.91\ (ddd,\ 11.9,$\\\hline $11.9,\ 11.9)$\\\hline $1.88\ (m)$\\\hline $1.35\ (m)$\\\hline $0.59\ (ddd,\ 2.5,$\\\hline $5.2,\ 10.7)$\\\hline $1.48\ (m)$\\\hline $1.74\ (m)$\\\hline $2.43\ (ddd,\ 6.1,\ 10.4,$\\\hline $16.8)$\\\hline $2.54\ (ddd,\ 5.2,\ 11.0,$\\\hline $16.8)$\\\hline\hline $4.17\ (2H,\ s)$\\\hline $0.83\ (s)$\\\hline $0.95\ (s)$\\\hline $0.97\ (d,\ 6.4)$\\\hlineend{tabular}$	$\hline \hline $	$\begin{array}{c c} \hline & \hline $	
$\begin{array}{c} \text{position} \\ 2\alpha \\ 2\beta \\ 3 \\ 4\alpha \\ 4\beta \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ \text{Glc-1'} \\ 2' \\ 3' \\ 4' \\ \end{array}$	$\hline \hline $	$\hline \hline $	$\begin{tabular}{ c c c c c c c }\hline\hline\hline\\ \hline\delta_{\rm H}(J{\rm Hz})\\\hline\hline\\ 1.09(dd,12.0,12.0)\\1.64(ddd,2.5,\\4.0,12.0)\\3.69(m)\\0.91(ddd,11.9,\\11.9,11.9)\\1.88(m)\\1.35(m)\\0.59(ddd,2.5,\\5.2,10.7)\\1.48(m)\\1.74(m)\\2.43(ddd,6.1,10.4,\\16.8)\\2.54(ddd,5.2,11.0,\\16.8)\\\hline\\ 4.17(2{\rm H},{\rm s})\\\hline\\ 0.83({\rm s})\\0.95({\rm s})\\0.97({\rm d},6.4)\\\hline\end{tabular}$	$\hline \hline $	$\begin{array}{c c} \hline & \hline \\ \hline \\$	
position 2α 2β 3 4α 4β 5 6 7 8 9 10 11 12 13 $Glc-1'$ $2'$ $3'$ $4'$ $5'$	$\hline \hline $	$\hline \hline $	$\begin{tabular}{ c c c c c c c }\hline\hline\hline\\ \hline\delta_{\rm H}(J{\rm Hz}) \\\hline\hline\\ 1.09(dd,12.0,12.0) \\1.64(ddd,2.5,\\4.0,12.0) \\3.69({\rm m}) \\0.91(ddd,11.9,\\11.9,11.9) \\1.88({\rm m}) \\1.35({\rm m}) \\0.59(ddd,2.5,\\5.2,10.7) \\1.48({\rm m}) \\1.74({\rm m}) \\2.43(ddd,6.1,10.4,\\16.8) \\2.54(ddd,5.2,11.0,\\16.8) \\\hline\\ 4.17(2{\rm H},{\rm s}) \\\hline\\ 0.83({\rm s}) \\0.97({\rm d},6.4) \\\hline\end{tabular}$	$\hline \hline $	$\begin{array}{c c} \hline & \hline $	
position 2α 2β 3 4α 4β 5 6 7 8 9 10 11 12 13 $Glc-1'$ $2'$ $3'$ $4'$ $5'$ $6'$	$\hline \hline $	$\hline \hline $	$\hline \hline $	$\hline \hline $	$\begin{array}{c c} \hline & \hline \\ \hline \\$	

^{*a*} Measured in CD₃OD. ^{*b*} Measured in CDCl₃. ^{*c*}Measured in pyridine-*d*₅.

Preparation of the (*R***)-MTPA Esters (1b, 1d) and (***S***)-MTPA Esters (1c, 1e) from 1a.** A solution of **1a** (9.3 mg) in CH₂Cl₂ (2.0 mL) was treated with (*R*)-2-methoxy-2-trifluoromethylphenylacetic acid [(*R*)-MTPA, 45.6 mg] in the presence of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC+HCl, 37.1 mg) and 4-dimethylaminopyridine (4-DMAP, 15.7 mg), and the mixture was stirred at room temperature for 16 h. The reaction mixture was successively washed with 5% aqueous HCl, saturated aqueous NaHCO₃, and brine, then dried over MgSO₄ powder and filtered. Removal of the

solvent from the filtrate under reduced pressure furnished a residue, which was purified by preparative TLC [CHCl₃-acetone (20:1, v/v)] to give **1b** (1.2 mg, 7%), **1d** (2.0 mg, 11%), and 3,9-di-(*R*)-MTPA ester derivative of **1a** (trace). Using a similar procedure, **1c** (0.6 mg, 4%), **1e** (1.8 mg, 12%), and 3,9-di-(*S*)-MTPA ester derivative of **1a** (trace) were obtained from **1a** (7.7 mg) using (*S*)-MTPA (35.1 mg), EDC-HCl (32.9 mg), and 4-DMAP (13.4 mg).

Compound 1b: colorless oil; ¹H NMR (pyridine- d_5 , 500 MHz) δ 0.61 (ddd, J = 1.6, 5.2, 10.4 Hz, H-6), 0.85, 0.91 (3H each, both s, H₃-12, 11), 0.85 (3H, d, J = 5.8 Hz, H₃-13), 1.18 (1H, ddd, J = 3.1,

Table 6. ¹³C NMR (125 MHz) Data of 6–8 and Related Compounds (6a–8a and 8d)

	6 ^{<i>a</i>}	6a ^a	6a ^b	7^{a}	$7\mathbf{a}^b$	8 ^a	8 ^c	8a ^a	$8a^b$	8d ^b
position	$\delta_{\mathbf{C}}$	$\delta_{\mathbf{C}}$	$\delta_{\mathbf{C}}$	$\delta_{\mathbf{C}}$	$\delta_{\mathbf{C}}$	$\delta_{\mathbf{C}}$	$\delta_{\rm C}$	$\delta_{\mathbf{C}}$	$\delta_{\mathbf{C}}$	$\delta_{\rm C}$
1	36.8	36.8	35.3	40.4	39.3	36.8	35.9	36.8	35.9	36.8
2	51.9	51.9	51.0	57.1	56.3	51.8	52.0	51.8	50.9	51.9
3	67.4	67.4	66.9	214.2	211.1	67.3	65.8	67.3	66.7	67.4
4	46.5	46.5	45.6	50.9	50.1	46.4	46.6	46.4	45.5	46.5
5	34.8	35.2	33.8	37.7	36.1	34.9	33.8	34.9	33.5	35.1
6	54.4	54.1	52.5	52.2	52.6	53.4	52.2	53.5	52.2	54.1
7	25.9	26.2	24.8	26.1	25.0	23.4	22.6	23.7	22.7	26.2
8	35.0	36.7	35.3	36.5	35.2	41.6	41.2	41.0	40.3	36.6
9	83.2	73.7	72.5	72.2	72.6	210.9	208.6	212.4	209.4	71.8
10	65.9	67.4	66.9	75.4	66.6	74.7	74.5	68.8	68.1	75.0
11	21.4	21.4	20.9	21.1	20.7	21.3	21.1	21.3	20.9	21.4
12	31.4	31.3	30.7	30.3	29.9	31.4	30.9	31.3	30.7	31.4
13	21.6	21.5	21.0	21.5	21.0	21.4	21.7	21.4	20.9	21.5
Glc-1'	104.0			104.9		104.3	104.6			104.5
2'	75.2			75.1		75.0	75.0			75.2
3'	78.2			77.9		77.8	78.4			78.0
4'	71.7			71.6		71.6	71.6			71.8
5'	77.9			78.0		78.2	78.7			78.0
6'	62.7			62.7		62.8	62.8			62.9

^a Measured in CD₃OD. ^b Measured in CDCl₃. ^c Measured in pyridine-d₅.

Figure 3.

12.5, 13.7 Hz, H α -4), 1.35 (1H, m, H-5), 1.37, 1.77 (1H each, both m, H₂-7), 1.42 (1H, br d, $J \approx 4$, 15 Hz, H α -2), 1.77 (1H, ddd, J = 2.1, 2.1, 14.7 Hz, H β -2), 1.86 (1H, ddd, J = 3.1, 6.1, 13.7 Hz, H β -4), 1.93, 2.02 (1H each, both m, H₂-8), 3.62, 3.74 (3H each, both s, $-COOCH_3$), 4.53 (1H, m, H-9), 5.43 (1H, m, H-3), [7.41–7.45 (3H, m), 7.76 (2H, dd-like), Ph-H].

Compound 1c: colorless oil; ¹H NMR (pyridine- d_5 , 500 MHz) δ 0.62 (ddd, J = 1.8, 5.8, 10.7 Hz, H-6), 0.62, 0.85 (3H each, both s, H₃-12, 11), 0.93 (3H, d, J = 5.8 Hz, H₃-13), 1.26 (1H, ddd, J = 3.2, 12.7, 14.4 Hz, H α -4), 1.37 (1H, br d, J = 4, 15 Hz, H α -2), 1.40, 1.78 (1H each, both m, H₂-7), 1.64 (1H, ddd, J = 2.5, 2.5, 14.7 Hz, H β -2), 1.67 (1H, m, H-5), 1.91 (1H, ddd, J = 2.5, 4.9, 14.4 Hz, H β -4), 1.95, 2.04 (1H each, both m, H₂-8), 3.65, 3.74 (3H each, both s, $-COOCH_3$), 4.55 (1H, m, H-9), 5.43 (1H, m, H-3), [7.42–7.46 (3H, m), 7.78 (2H, dd-like), Ph-H].

Compound 1d: colorless oil; ¹H NMR (CDCl₃, 500 MHz) δ 0.54 (ddd, J = 1.8, 5.7, 10.6 Hz, H-6), 0.78, 0.93 (3H each, both s, H₃-12, 11), 0.78 (3H, d, J = 6.4 Hz, H₃-13), 1.04, 1.42 (1H each, both m, H₂-7), 1.19 (1H, ddd, J = 3.2, 12.4, 14.5 Hz, H α -4), 1.33 (1H, br d, $J \approx 4$, 15 Hz, H α -2), 1.54 (1H, m, H β -2), 1.58, 1.81 (1H each, both m, H₂-8), 1.68 (1H, ddd, J = 2.5, 4.8, 14.5 Hz, H β -4), 2.00 (1H, m, H-5), 3.66, 3.79 (3H each, both s, -COOCH₃), 4.05 (1H, m, H-3), 5.16 (1H, dd, J = 3.4, 8.3 Hz, H-9), 7.39–7.69 (5H, m, Ph–H).

Compound 1e: colorless oil; ¹H NMR (CDCl₃, 500 MHz) δ 0.61 (ddd, J = 1.8, 5.8, 10.7 Hz, H-6), 0.84, 0.98 (3H each, both s, H₃-12, 11), 0.88 (3H, d, J = 6.7 Hz, H₃-13), 1.22, 1.53 (1H each, both m,

H₂-7), 1.25 (1H, ddd, J = 3.2, 12.7, 14.4 Hz, Hα-4), 1.36 (1H, br d, $J \approx 4$, 15 Hz, Hα-2), 1.56 (1H, ddd, J = 2.7, 2.7, 14.7 Hz, Hβ-2), 1.64, 1.87 (1H each, both m, H₂-8), 1.73 (1H, ddd, J = 2.5, 4.9, 14.4 Hz, Hβ-4), 2.08 (1H, m, H-5), 3.65, 3.76 (3H each, both s, $-\text{COOC}H_3$), 4.08 (1H, m, H-3), 5.16 (1H, dd, J = 3.4, 8.3 Hz, H-9), 7.39–7.61 (5H, m, Ph–H).

NaBH₄ Reduction of 1a. A solution of **1a** (18.9 mg) in MeOH– pyridine (2:1, v/v, 1.5 mL) was treated with NaBH₄ (4.0 mg), and the mixture was stirred at room temperature for 3 h. The reaction mixture was quenched in acetone, and then removal of the solvent under reduced pressure gave a residue, which was purified by normal-phase silica gel CC [hexane–EtOAc (5:1 \rightarrow 1:1, v/v)] to give **1f** (10.7 mg, 64%).

Compound 1f: colorless oil; $[\alpha]^{27}_{D} + 37.2$ (*c* 1.30, MeOH); IR (film) ν_{max} 3375, 2922, 2874, 1473, 1387, 1026, 756 cm⁻¹; ¹H NMR data, see Table 1; ¹³C NMR data, see Table 2; positive-ion FABMS *m*/*z* 253 [M + Na]⁺; HRFABMS *m*/*z* 253.1789 (calcd for C₁₃H₂₆O₃Na [M + Na]⁺, 253.1780).

Pivaloylation of 2. A solution of **2** (36.8 mg) in pyridine (1.0 mL) was treated with pivaloyl chloride (50 μ L), and the mixture was stirred at 60 °C for 6 h. The reaction mixture was poured into ice—water, and the whole was extracted with EtOAc. The EtOAc extract was successively washed with 5% aqueous HCl, saturated aqueous NaHCO₃, and brine, then dried over MgSO₄ powder and filtered. Removal of the solvent under reduced pressure furnished a resudue, which was

purified by normal-phase silica gel CC [1.5 g, hexane–EtOAc (20:1 \rightarrow 10:1 \rightarrow 5:1 \rightarrow 3:1, v/v)] to give **2a** (16.4 mg, 32%) and **2b** (8.3 mg, 13%).

Compound 2a: colorless oil; ¹H NMR (CDCl₃, 500 MHz) δ 0.56 (ddd, J = 2.5, 4.6, 11.1 Hz, H-6), 0.81, 0.95 (3H each, both s, H₃-11, 12), 0.94 (1H, ddd, J = 12.2, 12.2, 12.2 Hz, H α -4), 0.96 (3H, d, J = 6.7 Hz, H₃-13), 1.07, 1.60 (1H each, both m, H₂-7), 1.11 (1H, dd, J = 12.0, 12.0 Hz, H α -2), 1.22 [9H, s, $-\text{OCOC}(CH_3)_3$], 1.45 (1H, m, H-5), 1.45, 1.59 (1H each, both m, H₂-8), 1.69 (1H, ddd, J = 2.5, 4.3, 12.0 Hz, H β -2), 1.93 (1H, m, H β -4), 3.76 (1H, m, H-3), 3.79 (1H, m, H-9), [3.98 (1H, dd, J = 6.7, 11.3 Hz), 4.15 (1H, dd, J = 3.4, 11.3 Hz), H₂-10]; ¹³C NMR (CDCl₃, 125 MHz) δ 35.9 (C-1), 50.9 (C-2), 66.8 (C-3), 45.6 (C-4), 33.5 (C-5), 52.6 (C-6), 24.7 (C-7), 35.6 (C-8), 70.7 (C-9), 68.2 (C-10), 20.8 (C-11), 30.6 (C-12), 20.9 (C-13), 178.7 [$-\text{OCOC}(CH_3)_3$], 38.9 [$-\text{OCOC}(CH_3)_3$]; 27.2 [$-\text{OCOC}(CH_3)_3$]; EIMS m/z 314 [M⁺, (1], 296 (5), 257 (1), 212 (2), 200 (1), 57 (100); HREIMS m/z 314.2458 (calcd for C₁₈H₃₄O₄ [M⁺], 314.2457).

Compound 2b: colorless oil; ¹H NMR (CDCl₃, 500 MHz) δ 0.59 (ddd, J = 2.1, 4.9, 11.0 Hz, H-6), 0.87, 0.95 (3H each, both s, H₃-11, 12), 0.95 (3H, d, J = 6.4 Hz, H₃-13), 1.00 (1H, ddd, J = 12.3, 12.3, 12.3 Hz, H α -4), 1.08, 1.61 (1H each, both m, H₂-7), 1.16, 1.22 [9H each, both s, $-\text{OCOC}(CH_3)_3$], 1.26 (1H, dd, J = 12.0, 12.0 Hz, H α -2), 1.46, 1.59 (1H each, both m, H₂-8), 1.52 (1H, m, H-5), 1.67 (1H, dd, J = 2.5, 4.3, 12.0 Hz, H β -2), 1.93 (1H, m, H β -4), 3.79 (1H, m, H-9), [3.98 (1H, dd, J = 6.7, 11.3 Hz), 4.15 (1H, dd, J = 3.4, 11.3 Hz), H₂-10], 4.83 (1H, m, H-3); ¹³C NMR (CDCl₃, 125 MHz) δ 35.9 (C-1), 46.5 (C-2), 69.6 (C-3), 41.1 (C-4), 33.3 (C-5), 52.7 (C-6), 24.6 (C-7), 35.5 (C-8), 70.7 (C-9), 68.2 (C-10), 20.6 (C-11), 30.5 (C-12), 20.7 (C-13), 178.2, 178.8 [$-\text{OCOC}(CH_3)_3$], 38.6, 38.9 [$-\text{OCOC}(CH_3)_3$], 27.1, 27.2 [$-\text{OCOC}(CH_3)_3$]; positive-ion CIMS *m*/*z* 399 [M + 1]⁺, (9), 381 (3), 297 (100), 279 (14); HRCIMS *m*/*z* 399.3106 (calcd for C₂₃H₄₂O₅ [M + 1]⁺, 399.3110).

Preparation of the (R)-MTPA Esters (2c, 2e) and (S)-MTPA Esters (2d, 2f) from 2a and 2b. A solution of 2a (7.6 mg) in CH₂Cl₂ (1.0 mL) was treated with (R)-MTPA (68.3 mg) in the presence of EDC·HCl (48.5 mg) and 4-DMAP (21.6 mg), and the mixture was stirred under reflux for 6 h. Workup of the reaction mixture as described above gave a residue, which was purified by normal-phase silica gel CC [800 mg, hexane-EtOAc (40:1 \rightarrow 10:1 \rightarrow 5:1 \rightarrow 2:1, v/v)] to give 2c (1.3 mg, 10%). Using a similar procedure, (S)-MTPA ester derivative of 2a (2d, 1.2 mg, 10%) was obtained from 2a (7.2 mg) using (S)-MTPA (62.5 mg), EDC·HCl (53.4 mg), and 4-DMAP (21.6 mg). Through the similar procedure, a solution of **2b** (4.2 mg) in CH_2Cl_2 (1.0 mL) was treated with (R)-MTPA (50.7 mg) in the presence of EDC·HCl (32.5 mg) and 4-DMAP (17.2 mg), and the mixture was stirred under reflux for 6 h. Workup of the reaction mixture as described above gave a residue, which was purified by normal-phase silica gel CC [580 mg, hexane-EtOAc (20:1 \rightarrow 10:1, v/v)] to give 2e (0.3 mg, 5%). Using a similar procedure, (S)-MTPA ester derivative of 2b (2f, 0.2 mg, 4%) was obtained from 2b (3.4 mg) using (S)-MTPA (45.8 mg), EDC·HCl (31.2 mg), and 4-DMAP (15.5 mg).

Compound 2c: colorless oil; ¹H NMR (CDCl₃, 500 MHz) δ 0.61 (ddd, J = 2.5, 4.6, 11.1 Hz, H-6), 0.89, 0.95 (3H each, both s, H₃-12, 11), 0.98 (3H, d, J = 6.7 Hz, H₃-13), 1.09, 1.60 (1H each, both m, H2–7), 1.17 (1H, ddd, J = 12.2, 12.2, 12.2 Hz, Hα-4), 1.22 [9H, s, $-\text{OCOC}(CH_3)_3$], 1.25 (1H, dd, J = 12.2, 12.2, 12.2 Hz, Hα-2), 1.45, 1.59 (1H each, both m, H₂-8), 1.55 (1H, m, H-5), 1.73 (1H, ddd, J = 2.5, 4.3, 12.2 Hz, H β -2), 2.05 (1H, m, H β -4), 3.56 (3H, s, $-\text{COOC}H_3$), 3.78 (1H, m, H-9), [3.98 (1H, dd, J = 6.7, 11.3 Hz), 4.14 (1H, dd, J = 3.4, 11.3 Hz), H₂-10], 5.14 (1H, m, H-3), 7.39–7.53 (5H, m, Ph–H).

Compound 2d: colorless oil; ¹H NMR (CDCl₃, 500 MHz) δ 0.60 (ddd, J = 2.5, 4.6, 11.1 Hz, H-6), 0.90, 0.98 (3H each, both s, H₃-12, 11), 0.96 (3H, d, J = 6.5 Hz, H₃-13), 1.07 (1H, ddd, J = 12.3, 12.3, 12.3 Hz, H α -4), 1.09, 1.60 (1H each, both m, H₂-7), 1.22 [9H, s, $-\text{OCOC}(CH_3)_3$], 1.35 (1H, dd, J = 11.9, 11.9 Hz, H α -2), 1.45, 1.58 (1H each, both m, H₂-8), 1.53 (1H, m, H-5), 1.79 (1H, ddd, J = 2.5, 4.3, 11.9 Hz, H β -2), 1.98 (1H, m, H β -4), 3.55 (3H, s, $-\text{COOC}H_3$), 3.78 (1H, m, H-9), [3.97 (1H, dd, J = 6.7, 11.3 Hz), 4.14 (1H, dd, J = 3.4, 11.3 Hz), H₂-10], 5.14 (1H, m, H-3), 7.40–7.53 (5H, m, Ph–H).

Compound 2e: colorless oil; ¹H NMR (CDCl₃, 500 MHz) δ 0.56 (ddd, J = 2.1, 4.9, 11.0 Hz, H-6), 0.81, 0.88 (3H each, both s, H₃-12, 11), 0.92 (3H, d, J = 6.4 Hz, H₃-13), 0.99 (1H, ddd, J = 12.0, 12.0, 12.0, Hz, H α -4), 1.10, 1.49 (1H each, both m, H₂-7), 1.14, 1.16 [9H

each, both s, $-OCOC(CH_3)_3$], 1.19 (1H, dd, J = 12.0, 12.0 Hz, H α -2), 1.51 (1H, m, H-5), 1.60, 1.78 (1H each, both m, H₂-8), 1.66 (1H, ddd, J = 2.8, 4.0, 12.0 Hz, H β -2), 1.91 (1H, m, H β -4), 3.55 (3H, s, $-COOCH_3$), [4.06 (1H, dd, J = 6.1, 12.5 Hz), 4.31 (1H, dd, J = 3.1, 12.5 Hz), H₂-10], 4.80 (1H, m, H-3), 5.23 (1H, m, H-9), 7.39–7.55 (5H, m, Ph–H).

Compound 2f: colorless oil; ¹H NMR (CDCl₃, 500 MHz) δ 0.49 (ddd, J = 1.8, 4.2, 10.7 Hz, H-6), 0.73, 0.78 (3H each, both s, H₃-12, 11), 0.87 (3H, d, J = 6.4 Hz, H₃-13), 0.96 (1H, ddd, J = 11.9, 11.9, 11.9 Hz, H α -4), 1.01, 1.33 (1H each, both m, H₂-7), 1.15, 1.17 [9H each, both s, $-\text{OCOC}(CH_3)_3$], 1.15 (1H, dd, J = 12.1, 12.1 Hz, H α -2), 1.45 (1H, m, H-5), 1.57, 1.69 (1H each, both m, H₂-8), 1.65 (1H, ddd, J = 2.5, 4.3, 12.1 Hz, H β -2), 1.90 (1H, m, H β -4), 3.55 (3H, s, $-\text{COOC}H_3$), [4.08 (1H, dd, J = 6.7, 12.2 Hz), 4.37 (1H, dd, J = 3.1, 12.2 Hz), H₂-10], 4.81 (1H, m, H-3), 5.23 (1H, m, H-9), 7.34–7.56 (5H, m, Ph-H).

Acid Hydrolysis of 3–8. A solution of 3–8 (each 1.0 mg) in 1 M HCl (1.0 mL) was heated under reflux for 3 h. After cooling, the reaction mixture was extracted with EtOAc. The aqueous layer was subjected to HPLC: column, Kaseisorb LC NH₂-60-5, 4.6 mm i.d. \times 250 mm (Tokyo Kasei Co., Ltd., Tokyo, Japan); detection, optical rotation [Shodex OR-2 (Showa Denko Co., Ltd., Tokyo, Japan); mobile phase, CH₃CN–H₂O (85:15, v/v); flow rate 0.8 mL/min]. Identification of D-glucose present in the aqueous layer was carried out by comparison of its retention time and optical rotation with those of an authentic sample.

Enzymatic Hydrolysis of 3–8 with β -Glucosidase. A solution of **3–6** (3.0, 7.6, 5.0, and 2.0 mg, respectively) in H₂O (1.0 mL) was treated with β -glucosidase (2.0, 2.0, 2.6, 2.0 mg, respectively). The solution was stirred at 37 °C for 16 h, EtOH was added to the reaction mixture, the solvent was removed under reduced pressure, and the residue was purified by HPLC [MeOH–H₂O (40:60, v/v)] to furnish sarmentol A (2, 1.5 mg, 91% from 3; 3.8 mg, 85% from 4; 2.9 mg, 95% from 5) and sarmentol B (**6a**, 1.0 mg, 85% from **6**). A solution of 7 (12.1 mg) or **8** (25.1 mg) in H₂O (2.0 mL) was treated with β -glucosidase (8.0, 18.2 mg, respectively), and the solution was stirred at 37 °C for 16 h. The residue was purified by HPLC [MeOH–H₂O (40:60, v/v)] to give sarmentols C (**7a**, 6.3 mg, 89% from **7**) and D (**8a**, 12.1 mg, 82% from **8**), respectively.

Sarmentol B (6a): colorless oil; $[\alpha]^{25}{}_{\rm D}$ +5.6 (*c* 0.05, MeOH); IR (film) $\nu_{\rm max}$ 3372, 2924, 2874, 1474, 1387, 1026, 754 cm⁻¹; ¹H NMR data, see Table 5; ¹³C NMR data, see Table 6; positive-ion FABMS *m*/*z* 253 [M + Na]⁺; HRFABMS *m*/*z* 253.1771 (calcd for C₁₃H₂₆O₃Na [M + Na]⁺, 253.1780).

Sarmentol C (7a): colorless oil; $[α]^{23}_D$ +11.9 (*c* 0.22, MeOH); CD (MeOH) λ_{max} (Δε) 286 (+0.19); IR (film) ν_{max} 3432, 2955, 2876, 1700, 1653, 1472, 1391, 1285, 1100, 1063 cm⁻¹; ¹H NMR data, see Table 5; ¹³C NMR data, see Table 6; positive-ion CIMS *m*/*z* 229 [M + 1]⁺ (57), 211 (41), 197 (64), 138 (64), 95 (100); HRCIMS *m*/*z* 229.1801 (calcd for C₁₃H₂₅O₃ [M + 1]⁺, 229.1804).

Sarmentol D (8a): colorless oil; $[\alpha]^{21}_{D}$ +1.2 (*c* 0.42, MeOH); IR (film) ν_{max} 3346, 2955, 2876, 1717, 1473, 1073, 1026 cm⁻¹; ¹H NMR data, see Table 1; ¹³C NMR data, see Table 2; EIMS *m/z* 228 [M]⁺ (1), 210 (15), 200 (2), 197 (61), 179 (67), 161 (100); HREIMS: *m/z* 228.1723 (calcd for C₁₃H₂₄O₃, 228.1725).

NaBH₄ Reduction of 7 and 8. A solution of 7 (5.1 mg) in MeOH (1.5 mL) was treated with NaBH₄ (1.2 mg), and the mixture was stirred at room temperature for 30 min. The reaction mixture was quenched in acetone, and then removal of the solvent under reduced pressure gave a residue, which was purified by HPLC [MeOH–H₂O (34:66, v/v)] to give 5 (0.7 mg, 14%) and 7b (0.2 mg, 4%). Through the similar procedure, a solution of 8 (20.0 mg) in MeOH (2.0 mL) was treated with NaBH₄ (3.0 mg) and the mixture was stirred at room temperature for 30 min. Workup of the reaction mixture as described above gave a residue, which was purified by HPLC [MeOH–H₂O (25:75, v/v)] to give 5 (6.3 mg, 31%) and 8d (6.3 mg, 31%).

Compound 7b: ¹H NMR (CD₃OD, 500 MHz) δ 0.53 (1H, ddd, J = 2.1, 5.0, 11.0 Hz, H-6), 0.83, 0.95 (3H each, both s, H₃-12, 11), 0.98 (3H, d, J = 6.2 Hz, H₃-13), 1.60 (1H, m, H-5), [3.52 (1H, dd, J = 5.5, 11.2 Hz), 3.68 (1H, dd, J = 3.1, 11.2 Hz), H₂-10], [3.64 (1H, m), 3.86 (1H, dd, J = 1.6, 10.1 Hz), H₂-6'], 3.96 (1H, m, H-3), 4.41 (1H, d, J = 7.6 Hz, H-1'); positive-ion FABMS m/z 415 [M + Na]⁺; HRFABMS m/z 415.2316 (calcd for C₁₉H₃₆O₈Na [M + Na]⁺, 415.2308).

Compound 8d: amorphous powder; $[\alpha]^{25}_{D}$ –20.2 (*c* 2.50, MeOH); IR (KBr) ν_{max} 3422, 2940, 1565, 1475, 1078 cm⁻¹; ¹H NMR data, see

Table 5; ¹³C NMR data, see Table 6; positive-ion FABMS m/z 415 [M + Na]⁺; HRFABMS m/z 415.2301 (calcd for C₁₉H₃₆O₈Na [M + Na]⁺, 415.2308).

Enzymatic Hydrolysis of 8d with β -Glucosidase. A solution of **8d** (5.0 mg) in H₂O (1.0 mL) was treated with β -glucosidase (3.0 mg), and the solution was stirred at 37 °C for 16 h. After EtOH was added to the reaction mixture, the solvent was removed under reduced pressure and the residue was purified by HPLC [MeOH-H₂O (40:60, v/v)] to give 6a (2.7 mg, 92%).

Preparation of the (R)-MTPA Ester (8b) and (S)-MTPA Ester (8c) from 8a. A solution of 8a (6.4 mg) in CH₂Cl₂ (1.0 mL) was treated with (R)-MTPA (78.6 mg) in the presence of EDC·HCl (62.1 mg) and 4-DMAP (30.5 mg), and the mixture was stirred at room temperature for 6 h. Workup of the reaction mixture as described above gave a residue, which was purified by normal-phase silica gel CC [1.0 g, hexane-EtOAc ($30:1 \rightarrow 10:1, v/v$)] to give **8b** (10.4 mg, 61%). Using a similar procedure, the (S)-MTPA ester 8c (8.3 mg, 62%) was obtained from 8a (4.7 mg) using (S)-MTPA (78.5 mg), EDC·HCl (60.1 mg), and 4-DMAP (23.9 mg).

Compound 8b: colorless oil; ¹H NMR (CDCl₃, 500 MHz) δ 0.60 $(ddd, J = 2.8, 5.5, 11.0 \text{ Hz}, \text{H-6}), 0.89, 0.93 (3H each, both s, H_3-11),$ 12), 0.96 (3H, d, J = 6.4 Hz, H₃-13), 1.17 (1H, ddd, J = 11.9, 11.9, 11.9 Hz, H α -4), 1.25 (1H, dd, J = 12.5, 12.5 Hz, H α -2), 1.42, 1.77 (1H each, both m, H₂-7), 1.57 (1H, m, H-5), 1.73 (1H, ddd, J = 2.8, 4.6, 12.5 Hz, H β -2), 2.05 (1H, m, H β -4), [2.40 (1H, ddd, J = 5.8, 11.0, 17.4 Hz), 2.52 (1H, ddd, J = 4.9, 11.6, 17.4 Hz), H₂-8], 3.54, 3.64 (3H each, both s, $-COOCH_3$), 4.78, 4.89 (1H each, both d, J =16.5 Hz, H₂-10), 5.13 (1H, m, H-3), 7.39-7.64 (10H, m, Ph-H).

Compound 8c: colorless oil; ¹H NMR (CDCl₃, 500 MHz) δ 0.60 (ddd, J = 2.5, 5.2, 10.7 Hz, H-6), 0.90, 0.96 (3H each, both s, H₃-11, 12), 0.93 (3H, d, J = 6.4 Hz, H₃-13), 1.07 (1H, ddd, J = 11.9, 11.9, 11.9 Hz, H α -4), 1.34 (1H, dd, J = 12.2, 12.2 Hz, H α -2), 1.40, 1.76 (1H each, both m, H₂-7), 1.55 (1H, m, H-5), 1.80 (1H, ddd, J = 2.2, 4.3, 12.2 Hz, H β -2), 1.97 (1H, m, H β -4), [2.40 (1H, ddd, J = 6.1, 10.4, 16.8 Hz), 2.51 (1H, ddd, J = 5.2, 11.0, 16.8 Hz), H₂-8], 3.54, 3.64 (3H each, both s, $-COOCH_3$), 4.78, 4.89 (1H each, both d, J =16.5 Hz, H₂-10), 5.13 (1H, m, H-3), 7.39–7.64 (10H, m, Ph-H).

Acknowledgment. Part of this work was supported by the 21st COE program and Academic Frontier Project from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Supporting Information Available: 1H-1H COSY, HMBC, and NOE correlations of 1-8 (Figure S1). This information is available free of charge via the Internet at http://pubs.acs.org.

References and Notes

- (1) This paper is number 21 in our series Bioactive Constituents from Chinese Natural Medicines. For paper number 20, see: Matsuda, H.; Sugimoto, S.; Morikawa, T.; Kubo, M.; Nakamura, S.; Yoshikawa, M. Chem. Pharm. Bull. 2007, 55, 106-110.
- (2) Shanghai Scientific and Technologic Press Ed. Dictionary of Chinese Traditional Medicines; Shogakkan: Tokyo, 1985; pp 1427-1428.
- (3) Kang, T. H.; Pae, H. O.; Yoo, J. C.; Kim, N. Y.; Kim, Y. C.; Ko, G. I.; Chung, H. T. J. Ethnopharmacol. 2000, 70, 177-182.

- (4) He, A.; Wang, M. Zhongcaoyao 1997, 28, 517-522.
- (5) Liang, Q.; Xu, L.; Zhuang, Y.; Wu, T. Zhongcaoyao 2001, 32, 305, 375
- (6) Wei, T.; Yan, Y.; Guan, X.; Liu, Y.; Wei, D. Beijing Zhongyiyao Daxue Xuebao 2003, 26, 59-61.
- (7) Oh, H.; Kang, D.-G.; Kwon, J.-W.; Kwon, T.-O.; Lee, S.-Y.; Lee, D.-B.; Lee, H.-S. Biol. Pharm. Bull. 2004, 27, 2035-2037
- (8) He, A.; Hao, H.; Wang, M.; Zhang, D. Zhongguo Yaoke Daxue Xuebao 1997, 28, 271-274.
- (9) He, A.; Wang, M.; Hao, H.; Zhang, D.; Lee, K.-H. Phytochemistry 1998, 49, 2607–2610.
- (10) Fang, S.; Yan, X.; Li, J.; Fan, Z.; Xu, X.; Xu, R. Huaxue Xuebao 1982, 40, 273-280.
- (11) Lu, X.; Cao, X.; Zhang, S.; Hu, Y.; Bao, X.; Wang, Y. Yaoxue Xuebao **1984**, 19, 914-920.
- (12) Matsuda, H.; Morikawa, T.; Tao, J.; Ueda, K.; Yoshikawa, M. Chem. Pharm. Bull. 2002, 50, 208-215.
- (13) Morikawa, T.; Matsuda, H.; Toguchida, I.; Ueda, K.; Yoshikawa, M. J. Nat. Prod. 2002, 65, 1468-1474.
- (14)Tao, J.; Morikawa, T.; Toguchida, I.; Ando, S.; Matsuda, H.; Yoshikawa, M. Bioorg. Med. Chem. 2002, 10, 4005-4012.
- (15) Morikawa, T.; Tao, J.; Matsuda, H.; Yoshikawa, M. J. Nat. Prod. 2003, 66, 638-645.
- (16) Tao, J.; Morikawa, T.; Ando, S.; Matsuda, H.; Yoshikawa, M. Chem. Pharm. Bull. 2003, 51, 654-662.
- Matsuda, H.; Morikawa, T.; Xie, H.; Yoshikawa, M. Planta Med. (17)2004, 70, 847-855.
- (18) Sun, B.; Morikawa, T.; Matsuda, H.; Tewtrakul, S.; Wu, L. J.; Harima, S.; Yoshikawa, M. J. Nat. Prod. 2004, 67, 1464-1469.
- (19) Morikawa, T.; Sun, B.; Matsuda, H.; Wu, L. J.; Harima, S.; Yoshikawa, M. Chem. Pharm. Bull. 2004, 52, 1194–1199
- (20) Xie, H.; Wang, T.; Matsuda, H.; Morikawa, T.; Yoshikawa, M. Tani, T. Chem. Pharm. Bull. 2005, 53, 1416-1422.
- (21) Morikawa, T.; Xie, H.; Matsuda, H.; Yoshikawa, T. J. Nat. Prod. 2006, 69, 881-886.
- (22) Morikawa, T.; Xie, H.; Matsuda, H.; Wang, T.; Yoshikawa, M. Chem. Pharm. Bull. 2006, 54, 506-513.
- (23)Xie, H.; Morikawa, T.; Matsuda, H.; Nakamura, S.; Muraoka, O.; Yoshikawa, M. Chem. Pharm. Bull. 2006, 54, 669-675.
- (24) Yoshikawa, M.; Matsuda, H.; Morikawa, T.; Xie, H.; Nakamura, S.; Muraoka, O. *Bioorg. Med. Chem.* **2006**, *14*, 7468–7475. (25) Otsuka, H.; Zhong, X.-N.; Hirata, E.; Shinzato, T.; Takeda, Y. *Chem.*
- Pharm. Bull. 2001, 49, 1093-1097
- (26) Hisamoto, M.; Kikuzaki, H.; Nakatani, N. J. Agric. Food Chem. 2004, 52, 445-450.
- (27) De Marino, S.; Borbone, N.; Zollo, F.; Ianaro, A.; Di Meglio, P.; Iorizzi, M. J. Agric. Food Chem. 2004, 52, 7525-7531.
- (28) Harput, U. S.; Saracoglu, I.; Nagatsu, A.; Ogihara, Y. Chem. Pharm. Bull. 2002, 50, 1106-1108.
- (29) Otsuka, H.; Tamaki, A. Chem. Pharm. Bull. 2002, 50, 390-394.
- (30) The ¹H and ¹³C NMR spectra of 1-8, 1a, 1f, 6a-8a, and 8d were assigned with the aid of distortionless enhancement by polarization transfer (DEPT), homocorrelation spectroscopy (¹H-¹H COSY), heteronuclear multiple quantum coherence (HMQC), and HMBC experiments.
- (31) Ohtani, I.; Kusumi, T.; Kashman, Y.; Kakisawa, H. J. Am. Chem. Soc. 1991, 113, 4092-4096.
- (32) Inada, A.; Nakamura, Y.; Konishi, M.; Murata, H.; Kitamura, F.; Toya, H.; Nakanishi, T. Chem. Pharm. Bull. 1991, 39, 2437-2439.

NP068059S