# Megastigmanes and Their Glucosides from the Whole Plant of Sedum sarmentosum ${ }^{1}$ 

Masayuki Yoshikawa,*, ${ }^{\dagger}$ Toshio Morikawa, ${ }^{\dagger, \dagger}$ Yi Zhang, ${ }^{\dagger}$ Seikou Nakamura, ${ }^{\dagger}$ Osamu Muraoka, ${ }^{\star, \S}$ and Hisashi Matsuda ${ }^{\dagger}$<br>Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8412, Japan, and Pharmaceutical Research and Technology Institute and School of Pharmacy, Kinki University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan

Received October 24, 2006


#### Abstract

Two new megastigmanes, sarmentoic acid (1) and sarmentol A (2), and six new megastigmane glucosides, sedumosides $\mathrm{A}_{1}(\mathbf{3}), \mathrm{A}_{2}(\mathbf{4}), \mathrm{A}_{3}(\mathbf{5}), \mathrm{B}(\mathbf{6}), \mathrm{C}(7)$, and $\mathrm{D}(\mathbf{8})$, were isolated from the whole plant of Sedum sarmentosum together with eight known megastigmanes $(\mathbf{9}-\mathbf{1 6})$. The absolute stereostructures of $\mathbf{1 - 8}$ were elucidated on the basis of chemical and physicochemical evidence, including the application of the modified Mosher's method.


The plant Sedum sarmentosum (Crassulaceae) is a perennial herb widely distributed on the mountain slopes in China (e.g., Anhui, Hebei, Jiangxi, and Jiangsu Provinces). The whole plant of $S$. sarmentosum has been used for the treatment of chronic viral hepatitis in Chinese and Korean traditional medicines. ${ }^{2,3}$ In previous studies, several flavonoid, ${ }^{4-7}$ sterol, $, 5,8$ triterpene,,${ }^{5,9}$ and cyanogenic constituents ${ }^{10,11}$ were isolated from this herbal medicine. During the course of our studies on bioactive constituents from Chinese natural medicines, ${ }^{1,12-24}$ two new megastigmanes, sarmentoic acid (1) and sarmentol $\mathrm{A}(\mathbf{2})$, and six new megastigmane glucosides, sedumosides $\mathrm{A}_{1}(\mathbf{3}), \mathrm{A}_{2}(\mathbf{4}), \mathrm{A}_{3}(\mathbf{5}), \mathrm{B}(\mathbf{6}), \mathrm{C}(\mathbf{7})$, and $\mathrm{D}(\mathbf{8})$, were isolated from the whole plant of $S$. sarmentosum together with eight known megastigmanes $(\mathbf{9}-\mathbf{1 6})$. This paper deals with the isolation and structure elucidation, including the absolute configuration, of 1-8.

## Results and Discussion

The fresh whole plant of $S$. sarmentosum was extracted with hot $\mathrm{H}_{2} \mathrm{O}$, and the $\mathrm{H}_{2} \mathrm{O}$ extract was further treated with MeOH to give a MeOH -soluble extract ( $0.57 \%$ from the fresh plant). The MeOH -soluble extract was subjected to Diaion HP-20 column chromatography $\left(\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{MeOH}\right)$ to give $\mathrm{H}_{2} \mathrm{O}$ - and MeOH -eluted fractions ( 0.44 and $0.13 \%$, respectively). The MeOH -eluted fraction was subjected to normal- and reversed-phase column chromatographies and finally HPLC to give $\mathbf{1}-\mathbf{8}$ together with ( $3 S, 5 R, 6 S, 9 R$ )-megastigmane-3,9-diol ${ }^{25}(\mathbf{9})$, staphylionoside $\mathrm{D}^{26}(\mathbf{1 0})$, myrsinionosides $\mathrm{A}^{25}$ (11) and $\mathrm{D}^{25}(\mathbf{1 2})$, alangiosides $\mathrm{A}^{27}(\mathbf{1 3})$ and $\mathrm{J}^{25}(\mathbf{1 4})$, 3-hydroxy-5,6-epoxy- $\beta$-ionol 9-O- $\beta$-D-glucopyranoside ${ }^{28}$ (15), and platanionoside $\mathrm{D}^{29}(\mathbf{1 6})$.

Sarmentoic acid (1) was obtained as an amorphous powder ( $[\alpha]^{27}{ }^{\mathrm{D}}-3.3$ in MeOH ). The IR spectrum of $\mathbf{1}$ showed absorption bands at 3364 and $1713 \mathrm{~cm}^{-1}$ ascribable to hydroxyl and carboxyl functions. In the positive-ion FABMS of 1, a quasimolecular ion peak was observed at $m / z 267[\mathrm{M}+\mathrm{Na}]^{+}$, and HRFABMS analysis revealed the molecular formula of $\mathbf{1}$ to be $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{O}_{4}$. The ${ }^{1} \mathrm{H}$ (pyridine- $d_{5}$, Table 1) and ${ }^{13} \mathrm{C}$ NMR (Table 2) spectra of $\mathbf{1}$, which were assigned by various NMR experiments, ${ }^{30}$ showed signals assignable to three methyls [ $\delta 1.03,1.34$ (both s, $\mathrm{H}_{3}-12,11$ ), 1.07 (d, $J=6.7 \mathrm{~Hz}, \mathrm{H}_{3}-13$ )], two methines bearing an oxygen function [ $\delta 4.29$ (m, H-3), 4.73 (dd, $J=4.0,7.6 \mathrm{~Hz}, \mathrm{H}-9)$ ], and a carboxyl carbon $\left[\delta_{\mathrm{C}} 178.2(\mathrm{C}-10)\right.$ ] together with four methylenes, two methines, and a quaternary carbon. As shown in Figure S1 (Supporting Information), the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY experiment on $\mathbf{1}$ indicated the presence of a partial structure, written in bold lines,

[^0]and in the HMBC experiment, long-range correlations were observed between the following: $\mathrm{H}_{2}-2$ and $\mathrm{C}-1 ; \mathrm{H}-6$ and $\mathrm{C}-1 ; \mathrm{H}-9$ and $\mathrm{C}-7,8,10 ; \mathrm{H}_{3}-11$ and $\mathrm{C}-1,2,6,12 ; \mathrm{H}_{3}-12$ and $\mathrm{C}-1,2,6,11$; $\mathrm{H}_{3}-13$ and $\mathrm{C}-4-6$. The relative stereostructure of $\mathbf{1}$ except for the 9-position was characterized by the NOESY experiment, which showed NOE correlations between $\mathrm{H} \alpha-2$ and $\mathrm{H}-3, \mathrm{H}-6, \mathrm{H}_{3}-12$; H-3 and $\mathrm{H} \alpha-4 ; \mathrm{H} \alpha-4$ and $\mathrm{H}-6, \mathrm{H}_{3}-13$; $\mathrm{H}-6$ and $\mathrm{H}_{3}-12$; and $\mathrm{H}_{2}-7$ and $\mathrm{H}_{3}-11$, as shown in Figure S1. Finally, the absolute configuration of $\mathbf{1}$ was characterized by the application of the modified Mosher's method. ${ }^{31}$ Namely, methyl ester 1a, which was derived from 1 upon reaction with trimethylsilyldiazomethane $\left(\mathrm{TMSCHN}_{2}\right)$, gave the $3-(R)$-MTPA ester (1b), 9-( $R$ )-MTPA ester (1d), and 3,9-di- $(R)$ MTPA ester by treatment with $(R)$-2-methoxy-2-trifluoromethylphenylacetic acid $[(R)$-MTPA] in the presence of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC• $\mathrm{HCl})$ and 4-dimethylaminopyridine (4-DMAP). On the other hand, the 3 -( $(S)$ - and $9-(S)$-MTPA esters ( $\mathbf{1 c}, \mathbf{1 e )}$ and 3,9-di-( $(S)$-MTPA ester were obtained from 1a using ( $S$ )-MTPA in the presence of EDC $\cdot \mathrm{HCl}$ and 4-DMAP. As shown in Figure 1, the signals due to protons attached to the 4 -, 5 -, and 13-positions in the $3-(S)$-MTPA ester (1c) were observed at lower fields compared with those of the 3-(R)-MTPA ester (1b) [ $\Delta \delta$ : positive], while the signals due to protons on the 2 -, 11-, and 12 -positions in $\mathbf{1 c}$ were observed at higher fields compared with those of $\mathbf{1 b}$ [ $\Delta \delta$ : negative]. Thus, the absolute configuration at the 3 -position of $\mathbf{1 a}$ was determined to be $R$. The signals due to protons attached to the $5-8$ - and $11-$ 13 -positions in the 9 -( $(S)$-MTPA ester (1e) were observed at lower fields compared with those of the $9-(R)$-MTPA ester (1d) [ $\Delta \delta$ : positive], while the signal of the 10 -carboxy methyl proton in $\mathbf{1 e}$ was observed at higher field compared with that of 1d [ $\Delta \delta$ : negative]. Consequently, the absolute configuration at the 9-position of $\mathbf{1 a}$ was determined to be $R$ and the absolute configurations of $\mathbf{1}$ and 1a were elucidated as shown.
Sarmentol A (2) was obtained as colorless oil ( $[\alpha]^{27}{ }_{D}-7.4$ in $\mathrm{MeOH})$. The molecular formula, $\mathrm{C}_{13} \mathrm{H}_{26} \mathrm{O}_{3}$, of $\mathbf{2}$ was determined from the positive-ion FABMS ( $\mathrm{m} / \mathrm{z} 253[\mathrm{M}+\mathrm{Na}]^{+}$) and by HRFABMS. The ${ }^{1} \mathrm{H}\left(\mathrm{CD}_{3} \mathrm{OD}\right.$, Table 1) and ${ }^{13} \mathrm{C}$ NMR (Table 2) spectra ${ }^{30}$ of $\mathbf{2}$ showed signals assignable to three methyls [ $\delta 0.83$, 0.96 (both s, $\left.\mathrm{H}_{3}-11,12\right), 0.98\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, \mathrm{H}_{3}-13\right)$ ] and a methylene and two methines bearing an oxygen function $\{\delta$ [3.41 (dd, $\left.J=6.7,11.0 \mathrm{~Hz}), 3.46(\mathrm{dd}, J=4.6,11.0 \mathrm{~Hz}), \mathrm{H}_{2}-10\right], 3.53$ (m, H-9), 3.69 (m, H-3)\} together with four methylenes, two methines, and a quaternary carbon. The proton and carbon signals in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{2}$ resembled those of $\mathbf{1 f}$, which was derived from 1a by reduction with sodium borohydride $\left(\mathrm{NaBH}_{4}\right)$. As shown in Figure S 1 , the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY experiment on $\mathbf{2}$ indicated the partial structure written in bold lines, and the carbon skeleton and the positions of functional groups were characterized by the HMBC experiment, which showed long-range correlations between the following: $\mathrm{H}_{2}-2$ and $\mathrm{C}-1 ; \mathrm{H}-3$ and $\mathrm{C}-2$,

## Chart 1



Table 1. ${ }^{1} \mathrm{H}$ NMR ( 500 MHz ) Data of 1 and 2 and Related Compounds (1a and 1f)

|  | $1^{a}$ | $1 \mathbf{a}^{a}$ | $1 \mathrm{a}^{\text {b }}$ | $1 \mathbf{f}^{b}$ | $2^{\text {b }}$ | $2^{\text {c }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| position | $\delta_{\mathbf{H}}(J \mathrm{~Hz})$ |
| $2 \alpha$ | 1.42 (br dd, ca. 3, 14) | 1.42 (br dd, ca. 3, 14) | 1.38 (br dd, ca. $3,15)$ | 1.39 (br dd, ca. 3,14) | $\begin{aligned} & 1.10(\mathrm{dd}, 11.9, \\ & 11.9) \end{aligned}$ | $\begin{aligned} & 1.08(\mathrm{dd}, 11.6, \\ & 11.6) \end{aligned}$ |
| $2 \beta$ | 1.81 (m) | $\begin{aligned} & 1.82(\mathrm{ddd}, 2.0, \\ & 2.0,14.3) \end{aligned}$ | 1.58 (m) | $\begin{aligned} & 1.59 \text { (ddd, } 2.0, \\ & 2.0,13.7) \end{aligned}$ | $\begin{aligned} & 1.69 \text { (ddd, } 2.8,4.3 \text {, } \\ & 11.9 \text { ) } \end{aligned}$ | 1.63 (m) |
| 3 | 4.29 (m) | 4.29 (m) | 4.08 (m) | 4.09 (m) | 3.76 (m) | 3.69 (m) |
| $4 \alpha$ | $\begin{aligned} & 1.28 \text { (ddd, } 2.8, \\ & 13.2,14.7) \end{aligned}$ | $\begin{aligned} & 1.28 \text { (ddd, } 2.8, \\ & 13.2,14.7) \end{aligned}$ | 1.24 (m) | 1.24 (m) | $\begin{aligned} & 0.93 \text { (ddd, } 12.2 \text {, } \\ & 12.2,12.2) \end{aligned}$ | $\begin{aligned} & 0.90 \text { (ddd, 12.1, } \\ & 12.1,12.1) \end{aligned}$ |
| $4 \beta$ | $\begin{aligned} & 1.97 \text { (ddd, } 3.1,5.5 \text {, } \\ & 14.7) \end{aligned}$ | $\begin{aligned} & 1.97 \text { (ddd, } 3.1 \text {, } \\ & 5.5,14.7) \end{aligned}$ | $\begin{aligned} & 1.75 \text { (ddd, } 2.8,5.5 \text {, } \\ & 13.7 \text { ) } \end{aligned}$ | $\begin{aligned} & 1.73 \text { (ddd, } 2.8, \\ & 5.5,13.7) \end{aligned}$ | 1.92 (m) | 1.89 (m) |
| 5 | 2.12 (m) | 2.13 (m) | 1.80 (m) | 1.80 (m) | 1.46 (m) | 1.45 (m) |
| 6 | $\begin{aligned} & 0.78 \text { (ddd, 2.2, 5.8, } \\ & 10.8 \text { ) } \end{aligned}$ | $\begin{aligned} & 0.72 \text { (ddd, 2.1, 5.8, } \\ & 10.8 \text { ) } \end{aligned}$ | $\begin{aligned} & 0.62 \text { (ddd, 2.2, 5.8, } \\ & 10.8 \text { ) } \end{aligned}$ | $\begin{aligned} & 0.62 \text { (ddd, 2.1, } \\ & 4.6,9.2) \end{aligned}$ | $\begin{aligned} & 0.55 \text { (ddd, 1.9, 4.9, } \\ & 10.7 \text { ) } \end{aligned}$ | $\begin{aligned} & 0.54 \text { (ddd, } 2.1, \\ & 5.2,12.6) \end{aligned}$ |
| 7 | 1.72 (m) | 1.57 (m) | 1.20 (m) | 1.31 (m) | 1.05 (m) | 1.03 (m) |
|  | 2.05 (m) | 1.94 (m) | 1.60 (m) | 1.46 (m) | 1.57 (m) | 1.65 (m) |
| 8 | 2.19 (m) | 2.03 (m) | 1.72 (m) | 1.37 (m) | 1.40 (m) | 1.32 (m) |
|  | 2.22 (m) | 2.15 (m) | 1.79 (m) | 1.68 (m) | 1.55 (m) | 1.61 (m) |
| 9 | 4.73 (dd, 4.0, 7.6) | 4.59 (dd, 4.0, 7.7) | 4.17 (dd, 4.0, 7.7) | 3.69 (m) | 3.67 (m) | 3.53 (m) |
| 10 |  |  |  | 3.45 (dd, 5.7, 10.3) | 3.44 (dd, 8.2, 11.6) | 3.41 (dd, 6.7, 11.0) |
|  |  |  |  | 3.66 (dd, 2.3, 10.3) | 3.67 (dd, 3.1, 11.6) | 3.46 (dd, 4.6, 11.0) |
| 11 | 1.34 (s) | 1.32 (s) | 1.02 (s) | 1.03 (s) | 0.81 (s) | 0.83 (s) |
| 12 | 1.03 (s) | 0.99 (s) | 0.90 (s) | 0.89 (s) | 0.95 (s) | 0.96 (s) |
| 13 | 1.07 (d, 6.7) | 1.01 (d, 6.7) | 0.92 (d, 6.7) | 0.95 (d, 6.9) | 0.98 (d, 6.5) | 0.98 (d, 6.5) |
| COOMe |  | 3.75 (s) | 3.80 (s) |  |  |  |

${ }^{a}$ Measured in pyridine- $d_{5} .{ }^{b}$ Measured in $\mathrm{CDCl}_{3}$. ${ }^{c}$ Measured in $\mathrm{CD}_{3} \mathrm{OD}$.

4; H-6 and C-1; $\mathrm{H}_{2}-8$ and $\mathrm{C}-9,10 ; \mathrm{H}-9$ and $\mathrm{C}-8,10 ; \mathrm{H}_{2}-10$ and $\mathrm{C}-8,9 ; \mathrm{H}_{3}-11$ and $\mathrm{C}-1,2,6,12 ; \mathrm{H}_{3}-12$ and $\mathrm{C}-1,2,6,11 ; \mathrm{H}_{3}-13$ and $\mathrm{C}-4-6$. On the basis of this evidence, the planar structure of $\mathbf{2}$ was the same as that of $\mathbf{1 f}$. Next, the relative stereostructure of 2 was determined by a NOESY experiment, in which correlations were observed between $\mathrm{H} \alpha-2$ and $\mathrm{H}-6, \mathrm{H}_{3}-12 ; \mathrm{H} \beta-2$ and $\mathrm{H}-3$; $\mathrm{H}-3$ and $\mathrm{H} \beta-4 ; \mathrm{H} \alpha-4$ and $\mathrm{H}-6, \mathrm{H}_{3}-13$; $\mathrm{H}-6$ and $\mathrm{H}_{3}-12$; and $\mathrm{H}_{2}-7$ and $\mathrm{H}_{3}-11$. Finally, the absolute configuration of $\mathbf{2}$ was clarified by a modified Mosher's method. ${ }^{31}$ As shown in Figure 2, treatment of 2 with pivaloyl chloride in pyridine yielded the 10 -pivaloyl and 3,10-dipivaloyl esters (2a, 2b). The 10-pivaloyl ester (2a) selectively gave the 3-MTPA esters ( $\mathbf{2 c}, \mathbf{2 d}$ ) by steric hindrance due to the 10-pivaloyl group. In contrast, the 9-MTPA esters ( $\mathbf{2 e}, \mathbf{2 f}$ ) were obtained from 2b in low yields. The protons on the $2-, 11$-, and 12-positions of the 3-(S)-MTPA ester (2d) resonated at lower fields than those of the $3-(R)$-MTPA ester ( 2 c ) [ $\Delta \delta$ : positive], while the protons on the 4 -, 5 -, and 13 -positions of $\mathbf{2 d}$ were observed at higher fields compared to those of $\mathbf{2 c}$ [ $\Delta \delta$ : negative]. On the other hand,
the 10-proton and pivaloyl methyl protons of the 9-(S)-MTPA ester (2f) resonated at lower fields than those of the $9-(R)$-MTPA ester (2e) [ $\Delta \delta$ : positive], while the protons on the $5-8$ - and $11-13-$ positions of $\mathbf{2 f}$ were observed at higher fields compared to those of $\mathbf{2 e}$ [ $\Delta \delta$ : negative]. Consequently, the absolute configurations at the 3 - and 9 -positions in $\mathbf{2}$ were elucidated to be $3 S$ and $9 S$.

Sedumoside $\mathrm{A}_{1}(\mathbf{3})$ was obtained as an amorphous powder $\left([\alpha]^{22}{ }_{\mathrm{D}}\right.$ -28.3 in MeOH$)$. HRFABMS revealed the molecular formula of 3 to be $\mathrm{C}_{19} \mathrm{H}_{36} \mathrm{O}_{8}$, and the IR spectrum showed absorption bands at 3389 and $1078 \mathrm{~cm}^{-1}$, ascribable to hydroxyl and ether functions. The ${ }^{1} \mathrm{H}$ NMR (pyridine- $d_{5}$, Table 3) and ${ }^{13} \mathrm{C}$ NMR (Table 4) spectra ${ }^{30}$ of $\mathbf{3}$ showed the presence of the following functions: three methyls [ $\delta 0.75,0.92$ (both s, $\mathrm{H}_{3}-11,12$ ), 0.92 (d, $J=6.1 \mathrm{~Hz}$, $\mathrm{H}_{3}$-13)], a methylene and two methines bearing an oxygen function $\left\{\delta\left[3.52(\mathrm{dd}, J=5.8,11.9 \mathrm{~Hz}), 3.65(\mathrm{dd}, J=3.4,11.9 \mathrm{~Hz}), \mathrm{H}_{2}{ }^{-}\right.\right.$ 10], 4.05 (m, H-9), 4.12 ( $\mathrm{m}, \mathrm{H}-3$ ) \}, and a $\beta$-glucopyranosyl part [ $\delta 5.02\left(\mathrm{~d}, J=7.6 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right)$ ]. The acid hydrolysis of $\mathbf{3}$ with 1 M HCl liberated D-glucose, which was identified by HPLC analysis

Table 2. ${ }^{13} \mathrm{C}$ NMR (125 MHz) Data of $\mathbf{1}$ and 2 and Related Compounds (1a and 1f)

| position | $1{ }^{a}$ | $1 \mathrm{a}^{a}$ | $1 \mathrm{a}^{\text {b }}$ | $1 \mathbf{f}^{b}$ | $2^{\text {b }}$ | $2{ }^{\text {c }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\delta_{\text {C }}$ |
| 1 | 34.8 | 34.8 | 34.2 | 34.2 | 35.9 | 36.8 |
| 2 | 48.0 | 48.0 | 47.4 | 47.4 | 51.0 | 51.8 |
| 3 | 66.7 | 66.7 | 67.8 | 67.8 | 66.9 | 67.3 |
| 4 | 44.4 | 44.3 | 43.1 | 43.1 | 45.6 | 46.5 |
| 5 | 29.7 | 29.7 | 28.8 | 28.8 | 33.6 | 34.9 |
| 6 | 53.7 | 53.6 | 53.1 | 53.3 | 52.7 | 54.2 |
| 7 | 25.5 | 25.3 | 24.1 | 24.9 | 24.9 | 26.3 |
| 8 | 37.6 | 37.3 | 36.3 | 35.3 | 35.5 | 36.9 |
| 9 | 71.7 | 71.5 | 70.7 | 72.6 | 72.8 | 73.9 |
| 10 | 178.2 | 176.0 | 175.8 | 66.9 | 66.7 | 67.3 |
| 11 | 23.5 | 23.5 | 23.1 | 23.1 | 21.0 | 21.4 |
| 12 | 31.9 | 31.8 | 31.4 | 31.4 | 30.7 | 31.3 |
| 13 | 21.2 | 21.1 | 20.6 | 20.8 | 21.5 | 21.5 |
| COOMe |  | 51.6 | 52.5 |  |  |  |

${ }^{a}$ Measured in pyridine- $d 5 .{ }^{b}$ Measured in $\mathrm{CDCl}_{3}$. ${ }^{c}$ Measured in $\mathrm{CD}_{3} \mathrm{OD}$.


Figure 1.
using an optical rotation detector. ${ }^{12,14-16,19-22,24}$ Enzymatic hydrolysis of $\mathbf{3}$ with $\beta$-glucosidase gave $\mathbf{2}$ as an aglycon. The position of the $\beta$-D-glucopyranosyl moiety in $\mathbf{3}$ was determined by the HMBC experiment, in which a long-range correlation was observed between the $1^{\prime}$-proton and the 3 -carbon. Consequently, the structure of 3 was elucidated as sarmentol A 3-O- $\beta$-D-glucopyranoside.

Sedumosides $\mathrm{A}_{2}(\mathbf{4})$ and $\mathrm{A}_{3}(\mathbf{5})$ were obtained as amorphous powders (4: $[\alpha]{ }^{27}{ }_{D}-6.2 ; 5:[\alpha]{ }^{27}{ }_{D}-16.9$, both in MeOH ). The same molecular formula, $\mathrm{C}_{19} \mathrm{H}_{36} \mathrm{O}_{8}$, for both $\mathbf{4}$ and $\mathbf{5}$ was determined individually from the positive-ion FABMS ( $\mathrm{m} / \mathrm{z} 415[\mathrm{M}+\mathrm{Na}]^{+}$) and by HRFABMS. Acid hydrolysis of $\mathbf{4}$ and 5 with 1 M HCl liberated D-glucose. Enzymatic hydrolysis of $\mathbf{4}$ and $\mathbf{5}$ with $\beta$-glucosidase both gave 2 as the aglycon. The ${ }^{1} \mathrm{H}$ (pyridine- $d_{5}$, Table 3) and ${ }^{13} \mathrm{C}$ NMR (Table 4) spectra ${ }^{30}$ of $\mathbf{4}$ and 5 indicated the presence of the following functions: an aglycon part $\{\mathbf{4}: \delta 0.83,0.93$ (both $\left.\mathrm{s}, \mathrm{H}_{3}-11,12\right), 0.97$ (d, $\left.J=6.2 \mathrm{~Hz}, \mathrm{H}_{3}-13\right), 3.79\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-10\right)$, 3.97 (m, H-3), 4.10 (m, H-9); 5: $\delta 0.80,0.94$ (both s, H3-11, 12), 0.96 (d, $J=6.4 \mathrm{~Hz}, \mathrm{H}_{3}-13$ ), [3.89 (dd, $\left.J=8.6,10.1 \mathrm{~Hz}\right), 4.27$ (dd, $\left.\left.J=3.7,10.1 \mathrm{~Hz}), \mathrm{H}_{2}-10\right], 4.02(\mathrm{~m}, \mathrm{H}-3), 4.14(\mathrm{~m}, \mathrm{H}-9)\right\}$ and a $\beta$-glucopyranosyl part [4: $\delta 5.12$ (d, $\left.J=7.6 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right) ;$ 5: $\delta 5.00$ (d, $J=7.6 \mathrm{~Hz}, \mathrm{H}-1^{\prime}$ )]. In the HMBC experiment of $\mathbf{4}$, a longrange correlation was observed between the $1^{\prime}$-proton and the 9-carbon, while a long-range correlation in the HMBC experiment of 5 was observed between the $1^{\prime}$-proton and the 10 -carbon. Thus, 4 and 5 were elucidated as sarmentol A $9-O-\beta$-D-glucopyranoside and sarmentol A 10-O- $\beta$-D-glucopyranoside, respectively.

Sedumoside B (6), $[\alpha]^{23}{ }_{\mathrm{D}}-15.7$ (MeOH), was also obtained as an amorphous powder. The molecular formula, $\mathrm{C}_{19} \mathrm{H}_{36} \mathrm{O}_{8}$, of 6 was determined from the positive-ion FABMS and by HRFABMS. The proton and carbon signals in the ${ }^{1} \mathrm{H}\left(\mathrm{CD}_{3} \mathrm{OD}\right.$, Table 5) and ${ }^{13} \mathrm{C}$ NMR (Table 6) spectra ${ }^{30}$ of $\mathbf{6}$ were very similar to those of $\mathbf{4}$, except for the signals around the 9-position: three methyls [ $\delta 0.83,0.96$ (both s, $\left.\mathrm{H}_{3}-11,12\right), 0.99\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, \mathrm{H}_{3}-13\right)$ ], a methylene and two methines bearing an oxygen function $\left[\delta 3.59\left(2 \mathrm{H}\right.\right.$, d-like, $\mathrm{H}_{2}{ }^{-}$ 10), 3.65 (m, H-9), 3.69 ( $\mathrm{m}, \mathrm{H}-3$ )], and a $\beta$-glucopyranosyl part [ $\delta$ $4.33\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right)$ ]. Acid hydrolysis of $\mathbf{6}$ liberated D-glucose. The enzymatic hydrolysis of $\mathbf{6}$ with $\beta$-glucosidase gave a new megastigmane, sarmentol B (6a), the $9 R$ isomer of $\mathbf{2}$, as determined by the chemical correlation with 8 (vide infra). The linkage of the $\beta$-D-glucopyranosyl moiety in 6 was clarified by the HMBC experiment, which showed long-range correlation between the $1^{\prime}$ proton and 9-carbon (Figure S1). Consequently, $\mathbf{6}$ was elucidated to be sarmentol B 9-O- $\beta$-D-glucopyranoside.

Sedumoside C (7) was obtained as an amorphous powder ( $[\alpha]^{27}{ }^{D}$ -0.8 in MeOH$)$. The IR spectrum of 7 showed absorption bands at 3432,1702 , and $1061 \mathrm{~cm}^{-1}$, ascribable to hydroxyl, carbonyl, and ether functions. The molecular formula, $\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{O}_{8}$, of 7 was from FABMS $\left(m / z 413[\mathrm{M}+\mathrm{Na}]^{+}\right)$and HRFABMS. Sedumoside $\mathrm{D}(\mathbf{8}),[\alpha]^{27}{ }_{\mathrm{D}}-1.4(\mathrm{MeOH})$, was also obtained as an amorphous powder $\left(\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{O}_{8}\right)$. Treatment of $\mathbf{7}$ and $\mathbf{8}$ with 1 M HCl liberated D-glucose. The ${ }^{1} \mathrm{H}\left(\mathrm{CD}_{3} \mathrm{OD}\right.$, Table 5) and ${ }^{13} \mathrm{C}$ NMR (Table 6) spectra ${ }^{30}$ of 7 showed signals assignable to three methyls [ $\delta 0.77$, 1.08 (both s, $\left.\left.\mathrm{H}_{3}-11,12\right), 1.09\left(\mathrm{~d}, J=6.1 \mathrm{~Hz}, \mathrm{H}_{3}-13\right)\right]$, a methylene and a methine bearing an oxygen function $\{\delta[3.40(\mathrm{dd}, J=8.0$, 10.5 Hz ), 3.93 (dd, $J=3.4,10.5 \mathrm{~Hz}$ ), $\left.\left.\mathrm{H}_{2}-10\right], 3.75(\mathrm{~m}, \mathrm{H}-9)\right\}$, and a $\beta$-glucopyranosyl moiety [ $\delta 4.28$ ( $\mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{H}-1^{\prime}$ ) ] together with four methylenes, two methines, and two quaternary carbons including an carbonyl carbon ( $\delta_{\mathrm{C}} 214.2, \mathrm{C}-3$ ). The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{7}$ were superimposable on those of $\mathbf{5}$, except for signals due to the 3 -position. The ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY experiment on 7 indicated the presence of partial structures, written in bold lines, and in the HMBC experiment, long-range correlations were observed between $\mathrm{H}_{2}-2$ and $\mathrm{C}-1,3 ; \mathrm{H}_{2}-4$ and $\mathrm{C}-3$; $\mathrm{H}-6$ and $\mathrm{C}-1 ; \mathrm{H}-9$ and $\mathrm{C}-7,8,10$; $\mathrm{H}_{3}-11$ and $\mathrm{C}-1,2,6,12 ; \mathrm{H}_{3}-12$ and $\mathrm{C}-1,2,6,11 ; \mathrm{H}_{3}-13$ and $\mathrm{C}-4-$ 6 ; and $\mathrm{H}-1^{\prime}$ and $\mathrm{C}-10$. In the NOESY experiment on 7 , NOE correlations were observed between the following: $\mathrm{H} \alpha-2$ and $\mathrm{H}_{3}-$ 12; $\mathrm{H} \beta-2$ and $\mathrm{H}_{3}-11$; $\mathrm{H} \alpha-4$ and $\mathrm{H}-6, \mathrm{H}_{3}-13$; H-5 and $\mathrm{H}_{3}-11$; H-6 and $H_{3}-12 ; \mathrm{H}_{2}-7$ and $\mathrm{H}_{3}-11$. Enzymatic hydrolysis of 7 with $\beta$-glucosidase gave a new megastigmane, sarmentol C (7a), as the aglycon. By the application of the octant rule for 7 and 7a, the absolute configurations of the 5-positions were confirmed to be $R$. That is, the circular dichroic (CD) spectra of 7 and 7 a showed a positive Cotton effect [7: $284 \mathrm{~nm}(\Delta \epsilon+0.08)$; 7a: $286 \mathrm{~nm}(\Delta \epsilon$ +0.19 ), both in MeOH$].{ }^{25,32}$ Finally, reduction of 7 with $\mathrm{NaBH}_{4}$ yielded 5 and $\mathbf{7 b}$ in an approximate $7: 2$ ratio, so that the configuration of the 9 -position in 7 was clarified to be $S$.

The ${ }^{1} \mathrm{H}\left(\mathrm{CD}_{3} \mathrm{OD}\right.$, Table 5) and ${ }^{13} \mathrm{C}$ NMR (Table 6) spectra ${ }^{30}$ of 8 indicated the same functional groups as those of 7. Enzymatic hydrolysis of $\mathbf{8}$ with $\beta$-glucosidase gave a new megastigmane, sarmentol D (8a), as the aglycon. The ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY experiment on $\mathbf{8}$ indicated the partial structures written in bold lines, and the carbon skeleton and the positions of functional groups were determined by the HMBC experiment, which showed long-range correlations between $\mathrm{H}_{2}-2$ and $\mathrm{C}-1 ; \mathrm{H}-3$ and $\mathrm{C}-2,4 ; \mathrm{H}-6$ and $\mathrm{C}-1$; $\mathrm{H}_{2}-7$ and $\mathrm{C}-9 ; \mathrm{H}_{2}-8$ and $\mathrm{C}-9 ; \mathrm{H}_{2}-10$ and $\mathrm{C}-9 ; \mathrm{H}_{3}-11$ and $\mathrm{C}-1,2,6$, $12 ; \mathrm{H}_{3}-12$ and $\mathrm{C}-1,2,6,11 ; \mathrm{H}_{3}-13$ and $\mathrm{C}-4-6$; and $\mathrm{H}-1^{\prime}$ and $\mathrm{C}-10$. Consequently, the $\beta$-glucopyranosyl group in $\mathbf{8}$ was at the 10 position of $\mathbf{8 a}$. The relative structure of $\mathbf{8}$ was characterized by the NOESY experiment, which showed NOE correlations between $\mathrm{H} \alpha-2$ and $\mathrm{H}-6, \mathrm{H}_{3}-12 ; \mathrm{H} \beta-2$ and $\mathrm{H}-3 ; \mathrm{H}-3$ and $\mathrm{H} \beta-4$; $\mathrm{H} \alpha-4$ and $\mathrm{H}-6, \mathrm{H}_{3}-13$; $\mathrm{H}-6$ and $\mathrm{H}_{3}-12, \mathrm{H}_{3}-13$; and $\mathrm{H}_{2}-7$ and $\mathrm{H}_{3}-11$. The $(R)$ and $(S)$-MTPA esters ( $\mathbf{8 b}, \mathbf{8 c}$ ) were obtained from 8a using $(R)$ and $(S)$-MTPA in the presence of $\mathrm{EDC} \cdot \mathrm{HCl}$ and 4-DMAP,


Figure 2.

Table 3. ${ }^{1} \mathrm{H}$ NMR ( 500 MHz ) Data of $\mathbf{3 - 5}$

| position | $3^{a}$ | $3^{\text {b }}$ | $4^{a}$ | $4^{\text {b }}$ | $5^{a}$ | $5^{\text {b }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\delta_{\mathbf{H}}(J \mathrm{~Hz})$ | $\delta_{\mathrm{H}}(J \mathrm{~Hz})$ |
| $2 \alpha$ | $\begin{aligned} & 1.29 \text { (dd, 12.2, } \\ & 12.2) \end{aligned}$ | $\begin{aligned} & 1.14(\mathrm{dd}, 11.9, \\ & 11.9) \end{aligned}$ | $\begin{aligned} & 1.36(\mathrm{dd}, 12.0, \\ & 12.0) \end{aligned}$ | $\begin{aligned} & 1.08(\mathrm{dd}, 11.9, \\ & 11.9) \end{aligned}$ | $\begin{aligned} & 1.39(\mathrm{dd}, 12.0, \\ & 12.0) \end{aligned}$ | $\begin{aligned} & 1.09(\mathrm{dd}, 12.0, \\ & 12.0) \end{aligned}$ |
| $2 \beta$ | $\begin{aligned} & 2.03 \text { (ddd, 1.9, 3.5, } \\ & 12.2 \text { ) } \end{aligned}$ | $\begin{aligned} & 1.79 \text { (ddd, 2.2, 4.1, } \\ & 11.9 \text { ) } \end{aligned}$ | 1.90 (m) | 1.63 (m) | $\begin{aligned} & 1.92 \text { (ddd, } 2.8, \\ & 4.5,12.0) \end{aligned}$ | $\begin{aligned} & 1.64 \text { (ddd, } 2.5 \text {, } \\ & 4.5,12.0) \end{aligned}$ |
| 3 | 4.12 (m) | 3.84 (m) | 3.97 (m) | 3.69 (m) | 4.02 (m) | 3.69 (m) |
| $4 \alpha$ | $\begin{aligned} & 1.20 \text { (ddd, } 11.3 \text {, } \\ & 11.3,11.3) \end{aligned}$ | $\begin{aligned} & 1.03 \text { (ddd, } 12.2 \text {, } \\ & 12.2,12.2) \end{aligned}$ | 1.17 (m) | $\begin{aligned} & 0.91 \text { (ddd, 12.2, } \\ & 12.2,12.2 \text { ) } \end{aligned}$ | $\begin{aligned} & 1.21 \text { (ddd, 11.3, } \\ & 11.3,11.3) \end{aligned}$ | $\begin{aligned} & 0.90 \text { (ddd, 12.2, } \\ & 12.2,12.2) \end{aligned}$ |
| $4 \beta$ | 2.21 (m) | 2.01 (m) | 2.10 (m) | 1.89 (m) | 2.12 (m) | 1.89 (m) |
| 5 | 1.28 (m) | 1.45 (m) | 1.35 (m) | 1.44 (m) | 1.35 (m) | 1.43 (m) |
| 6 | $\begin{aligned} & 0.57 \text { (ddd, } 2.2, \\ & 4.6,10.7) \end{aligned}$ | $\begin{aligned} & 0.56 \text { (ddd, } 2.1, \\ & 5.2,11.0) \end{aligned}$ | $\begin{aligned} & 0.53 \text { (ddd, } 2.2, \\ & 5.3,11.7) \end{aligned}$ | $\begin{aligned} & 0.53 \text { (ddd, } 2.1, \\ & 5.2,12.6) \end{aligned}$ | $\begin{aligned} & 0.53 \text { (ddd, } 2.5, \\ & 5.0,11.0 \text { ) } \end{aligned}$ | $\begin{aligned} & 0.53 \text { (ddd, 2.8, } \\ & 4.0,10.7) \end{aligned}$ |
| 7 | 1.18 (m) | 1.03 (m) | 1.18 (m) | 1.08 (m) | 1.16 (m) | 1.06 (m) |
|  | 1.83 (m) | 1.65 (m) | 1.89 (m) | 1.65 (m) | 1.82 (m) | 1.63 (m) |
| 8 | 1.65 (m) | 1.33 (m) | 1.77 (m) | 1.57 (m) | 1.60 (m) | 1.41 (m) |
|  | 1.89 (m) | 1.61 (m) | 1.85 (m) | 1.64 (m) | 1.75 (m) | 1.57 (m) |
| 9 | 4.05 (m) | 3.52 (m) | 4.10 (m) | 3.69 (m) | 4.14 (m) | 3.71 (m) |
| 10 | 3.52 (dd, 5.8, 11.9) | 3.41 (dd, 6.7, 11.0) | 3.79 (2H, m) | 3.52 (dd, 5.8, 11.9) | 3.89 (dd, 8.6, 10.1) | 3.37 (dd, 7.8, 10.1) |
|  | 3.65 (dd, 3.4, 11.9) | 3.46 (dd, 4.3, 11.0) |  | 3.65 (dd, 3.4, 11.9) | 4.27 (dd, 3.7, 10.1) | 3.92 (dd, 2.7, 10.1) |
| 11 | 0.75 (s) | 0.84 (s) | 0.83 (s) | 0.83 (s) | 0.80 (s) | 0.83 (s) |
| 12 | 0.92 (s) | 0.97 (s) | 0.93 (s) | 0.97 (s) | 0.94 (s) | 0.96 (s) |
| 13 | 0.92 (d, 6.1) | 0.98 (d, 6.1) | 0.97 (d, 6.2) | 0.98 (d, 6.5) | 0.96 (d, 6.1) | 0.97 (d, 6.4) |
| Glc-1 ${ }^{\prime}$ | 5.02 (d, 7.6) | 4.34 (d, 7.6) | 5.12 (d, 7.6) | 4.42 (d, 7.7) | 5.00 (d, 7.6) | 4.27 (d, 7.6) |
| $2^{\prime}$ | 4.05 (m) | 3.12 (dd, 7.6, 9.2) | 4.03 (m) | 3.20 (dd, 7.7, 9.2) | 4.09 (dd, 7.6, 9.0) | 3.21 (dd, 7.6, 9.2) |
| 3 ' | 4.30 (m) | 3.35 (dd, 9.2, 9.2) | 4.20 (m) | 3.33 (dd, 9.2, 9.2) | 4.24 (m) | 3.33 (m) |
| $4^{\prime}$ | 4.28 (m) | 3.25 (m) | 4.19 (m) | 3.27 (m) | 4.24 (m) | 3.27 (m) |
| $5^{\prime}$ | 4.00 (m) | 3.27 (m) | 3.90 (m) | 3.27 (m) | 3.99 (m) | 3.25 (m) |
| $6^{\prime}$ | 4.33 (dd, 4.9, 11.9) | 3.65 (dd, 4.9, 11.6) | 4.34 (dd, 4.8, 11.6) | 3.64 (m) | 4.37 (dd, 5.5, 11.9) | 3.64 (m) |
|  | 4.58 (dd, 3.1, 11.9) | 3.86 (dd, 2.1, 11.6) | 4.48 (dd, 2.1, 11.6) | 3.85 (dd, 2.2, 12.0) | 4.56 (br d, ca. 12) | 3.86 (dd, 1.6, 10.1) |

${ }^{a}$ Measured in pyridine- $d_{5} .{ }^{b}$ Measured in $\mathrm{CD}_{3} \mathrm{OD}$.
respectively. The protons on the 2 -, 11-, and 12 -positions of the ( $S$ )-MTPA ester ( $8 \mathbf{8 c}$ ) resonated at lower fields than those of the $(R)$-MTPA ester ( $\mathbf{8 b}$ ) [ $\Delta \delta$ : positive], while the protons on the 4 -, 5 -, and 13-positions of $\mathbf{8 c}$ were observed at higher fields compared to those of $\mathbf{8 b}$ [ $\Delta \delta$ : negative]. Finally, reduction of the 9 -carbonyl group in $\mathbf{8}$ with $\mathrm{NaBH}_{4}$ gave $\mathbf{5}$ and its 9 -diastereoisomer ( $\mathbf{8 d}$ ) in an approximate $1: 1$ ratio. Enzymatic hydrolysis of $\mathbf{8 d}$ with $\beta$-glucosidase gave 6a, and thus the absolute configuration of $\mathbf{6 a}$ was also clarified. On the basis of this evidence, the absolute configurations of $\mathbf{6}$ and $\mathbf{8}$ were elucidated to be as shown.

## Experimental Section

General Experimental Procedures. The following instruments were used to obtain physical data: specific rotations, Horiba SEPA-300 digital polarimeter ( $l=5 \mathrm{~cm}$ ); CD spectra, JASCO J-720WI spectrometer; UV spectra, Shimadzu UV-1600 spectrometer; IR spectra, Shimadzu FTIR-8100 spectrometer; ${ }^{1} \mathrm{H}$ NMR spectra, JEOL JNM-

LA500 (500 MHz) spectrometer; ${ }^{13}$ C NMR spectra, JEOL JNM-LA500 $(125 \mathrm{MHz})$ spectrometer with tetramethylsilane as an internal standard; EIMS, CIMS, HREIMS, and HRCIMS, JEOL JMS-GCMATE mass spectrometer; FABMS and HRFABMS, JEOL JMS-SX 102A mass spectrometer; HPLC detector, Shimadzu RID-6A refractive index and SPD-10A UV-vis detectors; HPLC, Cosmosil $5 \mathrm{C}_{18}$-MS-II columns (Nacalai Tesque Inc., $250 \times 4.6 \mathrm{~mm}$ i.d. and $250 \times 20 \mathrm{~mm}$ i.d. for analytical and preparative purposes, respectively).

The following experimental conditions were used for chromatography: normal-phase silica gel column chromatography (CC), silica gel BW-200 (Fuji Silysia Chemical, Ltd., 150-350 mesh); reversed-phase silica gel CC, Chromatorex ODS DM1020T (Fuji Silysia Chemical, Ltd., 100-200 mesh); Diaion HP-20 CC (Nippon Rensui); Sephadex LH-20 CC (Amersham Biosciences K. K.); preparative TLC, precoated TLC plates with silica gel $60 \mathrm{~F}_{254}$ (Merck, 0.25 mm ) (normal-phase); TLC, precoated TLC plates with silica gel $60 \mathrm{~F}_{254}$ (Merck, 0.25 mm ) (normal-phase) and silica gel RP-18 $\mathrm{F}_{254 \mathrm{~S}}$ (Merck, 0.25 mm ) (reversedphase); reversed-phase HPTLC, precoated TLC plates with silica gel

Table 4. ${ }^{13} \mathrm{C}$ NMR ( 125 MHz ) Data of $\mathbf{3 - 5}$

| position | $3{ }^{a}$ | $3{ }^{\text {b }}$ | $4^{a}$ | $4^{b}$ | $5^{a}$ | $5^{b}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\delta_{\text {C }}$ |
| 1 | 35.8 | 36.7 | 36.0 | 36.8 | 35.9 | 36.8 |
| 2 | 48.1 | 48.4 | 51.9 | 51.8 | 52.1 | 51.8 |
| 3 | 74.2 | 75.7 | 66.0 | 67.4 | 66.0 | 67.4 |
| 4 | 44.3 | 44.7 | 46.6 | 46.5 | 46.8 | 46.5 |
| 5 | 33.9 | 34.9 | 33.9 | 34.9 | 34.0 | 34.9 |
| 6 | 53.1 | 54.3 | 53.3 | 54.4 | 53.1 | 54.2 |
| 7 | 25.7 | 26.3 | 25.3 | 26.1 | 25.5 | 26.1 |
| 8 | 36.9 | 36.9 | 35.0 | 35.2 | 36.5 | 36.8 |
| 9 | 73.3 | 73.9 | 82.8 | 82.5 | 71.4 | 72.4 |
| 10 | 67.5 | 67.2 | 65.0 | 64.8 | 75.8 | 75.5 |
| 11 | 21.0 | 21.3 | 21.2 | 21.4 | 21.3 | 21.3 |
| 12 | 30.9 | 31.3 | 31.0 | 31.4 | 31.0 | 31.4 |
| 13 | 21.1 | 21.5 | 21.3 | 21.5 | 21.3 | 21.5 |
| Glc-1' | 103.0 | 102.6 | 104.5 | 103.9 | 105.5 | 104.8 |
| $2^{\prime}$ | 75.4 | 75.0 | 75.7 | 75.6 | 75.4 | 75.2 |
| $3^{\prime}$ | 78.7 | 78.0 | 78.4 | 78.1 | 78.6 | 77.9 |
| $4^{\prime}$ | 71.8 | 71.7 | 71.7 | 71.7 | 71.7 | 71.6 |
| $5^{\prime}$ | 78.5 | 77.8 | 78.2 | 77.9 | 78.6 | 78.0 |
| $6^{\prime}$ | 62.9 | 62.8 | 62.8 | 62.9 | 62.8 | 62.7 |

${ }^{a}$ Measured in pyridine- $d_{5} .{ }^{b}$ Measured in $\mathrm{CD}_{3} \mathrm{OD}$.
RP-18 $\mathrm{WF}_{254 \mathrm{~S}}$ (Merck, 0.25 mm ); detection was achieved by spraying with $1 \% \mathrm{Ce}\left(\mathrm{SO}_{4}\right)_{2}-10 \%$ aqueous $\mathrm{H}_{2} \mathrm{SO}_{4}$, followed by heating.

Plant Material. S. sarmentosum was cultivated at Huangshan, Anhui Province, China, and plant material was identified by one of the authors (M.Y.). A voucher specimen (2005.01. Eishin-02) of this plant is on file in our laboratory.

Extraction and Isolation. The hot $\mathrm{H}_{2} \mathrm{O}$ extract (1950 g) from the fresh whole plant of $S$. sarmentosum (Huangshan, Anhui Province, China, $1.25 \%$ from this herbal medicine) was extracted three times with MeOH under reflux for 3 h . Evaporation of the solvent under reduced pressure provided a MeOH extract $(887.5 \mathrm{~g}, 0.57 \%)$, and an aliquot ( 398.6 g ) was subjected to Diaion HP-20 CC $\left(4.0 \mathrm{~kg}, \mathrm{H}_{2} \mathrm{O} \rightarrow\right.$ MeOH , twice) to give $\mathrm{H}_{2} \mathrm{O}$ - and MeOH -eluted fractions (305.0 and 93.6 g , respectively). The MeOH -eluted fraction ( 72.0 g ) was subjected to normal-phase silica gel $\mathrm{CC}\left[2.0 \mathrm{~kg}, \mathrm{CHCl}_{3}-\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(10: 3: 0.5\right.$ $\rightarrow 7: 3: 1, \mathrm{v} / \mathrm{v} / \mathrm{v}$, lower layer) $\rightarrow \mathrm{MeOH}$ ] to give five fractions [1 (12.1 g), $2(19.2 \mathrm{~g}), 3(10.4 \mathrm{~g}), 4(8.7 \mathrm{~g})$, and $5(16.3 \mathrm{~g})]$. Fraction $1(12.1$ g ) was subjected to reversed-phase silica gel $\mathrm{CC}\left[300 \mathrm{~g}, \mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}\right.$ $(5: 95 \rightarrow 10: 90 \rightarrow 20: 80 \rightarrow 30: 70 \rightarrow 50: 50 \rightarrow 70: 30, \mathrm{v} / \mathrm{v}) \rightarrow \mathrm{MeOH}]$ to afford 13 fractions $[1-1(550 \mathrm{mg}), 1-2(980 \mathrm{mg}), 1-3(1460 \mathrm{mg}), 1-4$ ( 1230 mg ), 1-5 (1510 mg), 1-6 (1800 mg), 1-7 (540 mg), 1-8 (600 $\mathrm{mg}), 1-9(710 \mathrm{mg}), 1-10(220 \mathrm{mg}), 1-11(1170 \mathrm{mg}), 1-12(1030 \mathrm{mg})$, and 1-13 $(150 \mathrm{mg})$ ]. Fraction 1-5 $(1510 \mathrm{mg})$ was purified by Sephadex LH-20 CC $\left[150 \mathrm{~g}, \mathrm{CHCl}_{3}-\mathrm{MeOH}(1: 1, \mathrm{v} / \mathrm{v})\right]$ and finally HPLC $\left[\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(35: 65, \mathrm{v} / \mathrm{v})\right]$ to furnish sarmentol A (2, 125.8 mg , $0.00023 \%$ ). Fraction $1-7(540 \mathrm{mg})$ was purified by Sephadex LH-20 $\mathrm{CC}\left[150 \mathrm{~g}, \mathrm{CHCl}_{3}-\mathrm{MeOH}(1: 1, \mathrm{v} / \mathrm{v})\right]$ and finally $\mathrm{HPLC}[\mathrm{MeOH}-$ $\left.\mathrm{H}_{2} \mathrm{O}(40: 60, \mathrm{v} / \mathrm{v})\right]$ to furnish myrsinionoside $\mathrm{A}(\mathbf{1 1}, 48.5 \mathrm{mg}, 0.00009 \%)$. Fraction 1-9 ( 710 mg ) was purified by Sephadex LH-20 CC [150 g, $\left.\mathrm{CHCl}_{3}-\mathrm{MeOH}(1: 1, \mathrm{v} / \mathrm{v})\right]$ and finally HPLC $\left[\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(50: 50, \mathrm{v} / \mathrm{v})\right]$ to furnish $(3 S, 5 R, 6 S, 9 R)$-megastigmane-3,9-diol $(\mathbf{9}, 14.8 \mathrm{mg}, 0.00003 \%)$. Fraction $2(19.2$ g) was subjected to reversed-phase silica gel CC [600 g, $\left.\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(20: 80 \rightarrow 30: 70 \rightarrow 40: 60 \rightarrow 70: 30, \mathrm{v} / \mathrm{v}) \rightarrow \mathrm{MeOH}\right]$ to afford 12 fractions [2-1 ( 200 mg ), 2-2 ( 4630 mg ), 2-3 (1160 mg), 2-4 $(1950 \mathrm{mg}), 2-5(3300 \mathrm{mg}), 2-6(650 \mathrm{mg}), 2-7(700 \mathrm{mg}), 2-8(1800$ $\mathrm{mg}), 2-9(810 \mathrm{mg}), 2-10(1360 \mathrm{mg}), 2-11(2270 \mathrm{mg})$, and 2-12 (770 $\mathrm{mg})$ ]. Fraction 2-4 (1950 mg ) was subjected to normal-phase silica gel $\mathrm{CC}\left[100 \mathrm{~g}, \mathrm{CHCl}_{3} \rightarrow \mathrm{CHCl}_{3}-\mathrm{MeOH}(50: 1 \rightarrow 20: 1 \rightarrow 10: 1, \mathrm{v} / \mathrm{v}) \rightarrow\right.$ $\mathrm{CHCl}_{3}-\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(20: 3: 1, \mathrm{v} / \mathrm{v} / \mathrm{v}$, lower layer $\left.) \rightarrow \mathrm{MeOH}\right]$ to give seven fractions [2-4-1 ( 90.5 mg ), 2-4-2 ( 50.1 mg ), 2-4-3 ( 284.0 mg ), 2-4-4 (153.8 mg), 2-4-5 (348.2 mg), 2-4-6 (721.1 mg), and 2-4-7 (300.0 $\mathrm{mg})$ ]. Fraction 2-4-5 ( 348.2 mg ) was further purified by HPLC $\left[\mathrm{CH}_{3}-\right.$ $\mathrm{CN}-\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(10: 8: 82, \mathrm{v} / \mathrm{v} / \mathrm{v})$ and $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(30: 70$ or $32: 68$, $\mathrm{v} / \mathrm{v})$ ] to furnish sedumoside $\mathrm{D}(\mathbf{8}, 43.0 \mathrm{mg}, 0.00008 \%)$, staphylionoside $\mathrm{D}(\mathbf{1 0}, 3.2 \mathrm{mg}, 0.00001 \%)$, and 3-hydroxy-5,6-epoxy- $\beta$-ionol 9- $O-\beta$ -D-glucopyranoside (15, $22.0 \mathrm{mg}, 0.00004 \%$ ). Fraction 2-4-6 (721.1 mg) was further purified by HPLC $\left[\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(32: 68\right.$, v/v $\left.)\right]$ to give sedumosides $\mathrm{A}_{1}(\mathbf{3}, 162.5 \mathrm{mg}, 0.00030 \%), \mathrm{A}_{2}(\mathbf{4}, 60.6 \mathrm{mg}, 0.00011 \%)$, $\mathrm{A}_{3}(5,29.2 \mathrm{mg}, 0.00005 \%)$, and $\mathrm{B}(\mathbf{6}, 3.2 \mathrm{mg}, 0.00001 \%)$ and alangioside A (13, 52.8 mg, 0.00010\%). Fraction 2-5 (3300 mg) was
further separated by HPLC $\left[\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}(15: 85\right.$, v/v) ] to furnish 3 ( $34.0 \mathrm{mg}, 0.00006 \%$ ), 4 ( $838.6 \mathrm{mg}, 0.0016 \%$ ), 5 ( $200.9 \mathrm{mg}, 0.00024 \%$ ), sedumoside C ( $7,24.1 \mathrm{mg}, 0.00005 \%$ ), and $\mathbf{8}(220.5 \mathrm{mg}, 0.00041 \%)$. Fraction 2-8 (1800 mg) was purified by Sephadex LH-20 CC [150 g, $\left.\mathrm{CHCl}_{3}-\mathrm{MeOH}(1: 1, \mathrm{v} / \mathrm{v})\right]$ and finally $\mathrm{HPLC}\left[\mathrm{CH}_{3} \mathrm{CN}-\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}\right.$ (20:8:72, v/v/v) and $\left.\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(40: 60, \mathrm{v} / \mathrm{v})\right]$ to furnish sarmentoic $\operatorname{acid}(1,429.8 \mathrm{mg}, 0.00080 \%), 1 \mathbf{a}(24.5 \mathrm{mg}, 0.00005 \%)$, and alangioside J (14, $80.9 \mathrm{mg}, 0.00015 \%)$. Fraction 2-10 ( 1360 mg ) was further separated by HPLC $\left[\mathrm{CH}_{3} \mathrm{CN}-\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(20: 8: 72\right.$, v/v/v) and $\left.\mathrm{CHCl}_{3}-\mathrm{MeOH}(40: 60, \mathrm{v} / \mathrm{v})\right]$ to furnish myrsinionoside D (12, 182.1 $\mathrm{mg}, 0.00034 \%$ ) and 14 (21.2 mg, $0.00004 \%$ ). Fraction 3 (10.4 g) was subjected to reversed-phase silica gel CC [240 g, $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(10: 90$ $\rightarrow 20: 80 \rightarrow 30: 70 \rightarrow 40: 60, \mathrm{v} / \mathrm{v}) \rightarrow \mathrm{MeOH}$ ] to afford 14 fractions [3-1 $(123.0 \mathrm{mg}), 3-2(675.1 \mathrm{mg}), 3-3(574.8 \mathrm{mg}), 3-4(1337 \mathrm{mg}), 3-5(797.8$ $\mathrm{mg}), 3-6(798.6 \mathrm{mg}), 3-7(230.3 \mathrm{mg}), 3-8(901.2 \mathrm{mg}), 3-9(645.6 \mathrm{mg})$, 3-10 ( 256.4 mg ), 3-11 ( 511.7 mg ), 3-12 ( 1238 mg ), 3-13 ( 473.1 mg ), and 3-14 (1320 mg)]. Fraction 3-9 (645.6 mg) was purified by Sephadex LH-20 CC $\left[150 \mathrm{~g}, \mathrm{CHCl}_{3}-\mathrm{MeOH}(1: 1, \mathrm{v} / \mathrm{v})\right]$ and finally HPLC $\left[\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(32: 68, \mathrm{v} / \mathrm{v})\right]$ to give plantaninoside $\mathrm{D}(\mathbf{1 6}, 17.7 \mathrm{mg}$, $0.00003 \%$ ). The known compounds were identified by comparison of their physical data $\left([\alpha]_{\mathrm{D}}, \mathrm{IR},{ }^{1} \mathrm{H}\right.$ NMR, ${ }^{13} \mathrm{C}$ NMR, MS] with reported values. ${ }^{25-29}$

Sarmentoic acid (1): amorphous powder; $[\alpha]^{27}{ }_{D}-3.3$ (c 1.02, MeOH ); IR (KBr) $v_{\max } 3364,2971,2922,2512,1713,1470,1294$, 1267, 1192, 1113, 1080, 1042, 948, 793, $650 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR data, see Table 1; ${ }^{13} \mathrm{C}$ NMR data, see Table 2; positive-ion FABMS $m / z 267$ [M $+\mathrm{Na}]^{+} ;$HRFABMS m/z 267.1579 (calcd for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$, 267.1572).

Sarmentol A (2): colorless oil; $[\alpha]^{27}{ }_{\mathrm{D}}-7.4$ (c 0.10, MeOH); IR (film) $v_{\max } 3389,2926,2874,1472,1387,1026,756 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR data, see Table 1; ${ }^{13} \mathrm{C}$ NMR data, see Table 2; positive-ion FABMS $m / z 253[\mathrm{M}+\mathrm{Na}]^{+} ;$HRFABMS $m / z 253.1774$ (calcd for $\mathrm{C}_{13} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{Na}$ $\left.[\mathrm{M}+\mathrm{Na}]^{+}, 253.1780\right)$.

Sedumoside $\mathbf{A}_{1}$ (3): amorphous powder; $[\alpha]^{22}{ }_{\mathrm{D}}-28.3$ (c 1.64, $\mathrm{MeOH})$; IR (KBr) $\nu_{\max } 3389$, 2930, 2876, 1474, 1368, 1163, 1078, $1022 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR data, see Table $3 ;{ }^{13} \mathrm{C}$ NMR data, see Table 4; positive-ion FABMS $m / z 415[\mathrm{M}+\mathrm{Na}]^{+}$; HRFABMS $\mathrm{m} / \mathrm{z} 415.2313$ (calcd for $\mathrm{C}_{19} \mathrm{H}_{36} \mathrm{O}_{8} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}, 415.2308$ ).

Sedumoside $\mathbf{A}_{2}$ (4): amorphous powder; $[\alpha]^{27}{ }_{\mathrm{D}}-6.2$ (c 1.69, $\mathrm{MeOH}) ; \mathrm{IR}(\mathrm{KBr}) \nu_{\max } 3410,2918,1508,1474,1377,1165,1076$, $1022 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR data, see Table 3; ${ }^{13} \mathrm{C}$ NMR data, see Table 4; positive-ion FABMS $m / z 415[\mathrm{M}+\mathrm{Na}]^{+}$; HRFABMS $m / z 415.2313$ (calcd for $\mathrm{C}_{19} \mathrm{H}_{36} \mathrm{O}_{8} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$, 415.2308).

Sedumoside $\mathbf{A}_{3}$ (5): amorphous powder; $[\alpha]^{27}{ }_{D}-16.9$ (c 0.95, MeOH ); IR (KBr) $\nu_{\max } 3389$, 2940, 1561, 1522, 1474, 1175, 1085, $1032 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR data, see Table 3; ${ }^{13} \mathrm{C}$ NMR data, see Table 4; positive-ion FABMS m/z $415[\mathrm{M}+\mathrm{Na}]^{+}$; HRFABMS m/z 415.2303 (calcd for $\mathrm{C}_{19} \mathrm{H}_{36} \mathrm{O}_{8} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}, 415.2308$ ).

Sedumoside $\mathbf{B}$ (6): amorphous powder; $[\alpha]^{23}{ }_{\mathrm{D}}-15.7$ (c 0.16, MeOH ); IR (KBr) $\nu_{\max } 3390,2928,2876,1474,1078,1022 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR data, see Table 5; ${ }^{13} \mathrm{C}$ NMR data, see Table 6; positive-ion FABMS m/z $415[\mathrm{M}+\mathrm{Na}]^{+}$; HRFABMS $\mathrm{m} / \mathrm{z} 415.2313$ (calcd for $\left.\mathrm{C}_{19} \mathrm{H}_{36} \mathrm{O}_{8} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}, 415.2308\right)$.

Sedumoside C (7): amorphous powder; $[\alpha]^{27}{ }_{\mathrm{D}}-0.8$ (c 0.82, MeOH); $\mathrm{CD}(\mathrm{MeOH}) \lambda_{\max }(\Delta \epsilon) 284(+0.08) ;$ IR $(\mathrm{KBr}) \nu_{\max } 3432,2958,1702$, 1653, 1474, 1100, $1061 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR data, see Table 5; ${ }^{13} \mathrm{C}$ NMR data, see Table 6; positive-ion FABMS $m / z 413[\mathrm{M}+\mathrm{Na}]^{+}$; HRFABMS m/z 413.2153 (calcd for $\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{O}_{8} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}, 413.2151$ ).

Sedumoside D (8): amorphous powder; $[\alpha]^{27}{ }_{\mathrm{D}}-1.4$ (c 2.01, MeOH); IR (KBr) $\nu_{\max } 3432,2961,1719,1655,1647,1561,1541,1474,1079$, $1051 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR data, see Table 5; ${ }^{13} \mathrm{C}$ NMR data, see Table 6; positive-ion FABMS $m / z 413[\mathrm{M}+\mathrm{Na}]^{+}$; HRFABMS $m / z 413.2147$ (calcd for $\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{O}_{8} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}, 413.2151$ ).

Methylation of $1 .{ }^{18}$ A solution of $\mathbf{1}(20.0 \mathrm{mg})$ in $\mathrm{Et}_{2} \mathrm{O}-\mathrm{MeOH}$ (1: $1, \mathrm{v} / \mathrm{v}, 1.0 \mathrm{~mL}$ ) was treated with trimethylsilyldiazomethane (TM$\mathrm{SCHN}_{2}, 10 \%$ in hexane, ca. 0.3 mL ), and the whole was stirred at room temperature for 16 h . Removal of the solvent under reduced pressure furnished a residue, which was purified by normal-phase silica gel CC $\left[2.0 \mathrm{~g}\right.$, hexane $\rightarrow$ hexane $-\mathrm{CHCl}_{3}(1: 1, \mathrm{v} / \mathrm{v}) \rightarrow \mathrm{CHCl}_{3}$ ] to give 1a (18.0 $\mathrm{mg}, 85 \%$ ).

Compound 1a: colorless oil; $[\alpha]^{27}{ }_{\mathrm{D}}-6.4$ (c 2.01, MeOH); IR (film) $v_{\max } 3432,2953,2940,1717,1541,1472,1259,1165,1076,1038$, 899, $752 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR data, see Table $1 ;{ }^{13} \mathrm{C}$ NMR data, see Table 2; EIMS m/z $258[\mathrm{M}]^{+}$(1), 240 (8), 225 (20), 123 (100); HREIMS $m / z$ 258.1825 (calcd for $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{O}_{4}, 258.1831$ ).

Table 5. ${ }^{1} \mathrm{H}$ NMR ( 500 MHz ) Data of $\mathbf{6}-\mathbf{8}$ and Related Compounds ( $\mathbf{6 a}-\mathbf{8 a}$ and $\mathbf{8 d}$ )

| position | $6^{a}$ | $6 \mathrm{a}^{a}$ | $6 \mathrm{a}^{b}$ | $7^{a}$ | $7 \mathbf{a}^{\text {b }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\delta_{\mathbf{H}}(J \mathrm{~Hz})$ |
| $2 \alpha$ | 1.08 (dd, 11.6, 11.6) | 1.09 (dd, 11.9, 11.9) | 1.10 (dd, 11.9, 11.9) | 2.38 (d, 13.2) | 2.28 (d, 13.1) |
| $2 \beta$ | 1.64 (m) | $\begin{aligned} & 1.64 \text { (ddd, } 2.5 \text {, } \\ & 4.3,11.9 \text { ) } \end{aligned}$ | $\begin{aligned} & 1.64 \text { (ddd, } 2.5 \text {, } \\ & 4.3,11.9) \end{aligned}$ | 1.97 (dd, 2.4, 13.2) | 2.07 (dd, 2.5, 13.1) |
| 3 | 3.69 (m) | 3.69 (m) | 3.77 (m) |  |  |
| $4 \alpha$ | $\begin{aligned} & 0.92 \text { (ddd, 12.2, } \\ & 12.2,12.2 \text { ) } \end{aligned}$ | $\begin{aligned} & 0.90 \text { (ddd, 12.2, } \\ & 12.2,12.2 \text { ) } \end{aligned}$ | $\begin{aligned} & 0.93 \text { (ddd, 12.1, } \\ & 12.1,12.1 \text { ) } \end{aligned}$ | $\begin{aligned} & 2.15 \text { (ddd, } 0.9 \text {, } \\ & 14.1,14.1) \end{aligned}$ | 2.04 (m) |
| $4 \beta$ | 1.88 (m) | 1.88 (m) | 1.92 (m) | $\begin{aligned} & 2.21 \text { (ddd, } 2.4 \text {, } \\ & 4.6,14.1) \end{aligned}$ | $\begin{aligned} & 2.31 \text { (ddd, } 2.5, \\ & 4.6,14.1) \end{aligned}$ |
| 5 | 1.44 (m) | 1.45 (m) | 1.45 (m) | 1.78 (m) | 1.81 (m) |
| 6 | $\begin{aligned} & 0.53 \text { (ddd, } 3.1, \\ & 4.9,11.3) \end{aligned}$ | $\begin{aligned} & 0.54 \text { (ddd, } 2.7, \\ & 5.8,11.3) \end{aligned}$ | $\begin{aligned} & 0.54 \text { (ddd, } 2.5, \\ & 5.2,11.0) \end{aligned}$ | $\begin{aligned} & 1.16 \text { (ddd, } 2.5, \\ & 4.9,11.3 \text { ) } \end{aligned}$ | 1.09 (m) |
| 7 | 1.32 (m) | 1.28 (m) | 1.24 (m) | 1.20 (m) | 1.17 (m) |
|  | 1.47 (m) | 1.47 (m) | 1.46 (m) | 1.67 (m) | 1.65 (m) |
| 8 | 1.50 (m) | 1.49 (2H, m) | 1.37 (m) | 1.47 (m) | 1.51 (m) |
|  | 1.69 (m) |  | 1.58 (m) | 1.65 (m) | 1.63 (m) |
| 9 | 3.65 (m) | 3.53 (m) | 3.69 (m) | 3.75 (m) | 3.73 (m) |
| 10 | 3.59 (2H, d-like) | $3.42 \text { (dd, 6.4, 11.0) }$ | $3.47 \text { (dd, 6.4, 11.0) }$ | $3.40 \text { (dd, } 8.0,10.5)$ | $3.47 \text { (dd, 8.0, 11.0) }$ |
|  |  | $3.45 \text { (dd, 4.6, 11.0) }$ | 3.66 (dd, 4.6, 11.0) | 3.93 (dd, 3.4, 10.5) | $3.69(\mathrm{dd}, 3.3,11.0)$ |
| 11 | 0.83 (s) | 0.83 (s) | 0.81 (s) | 0.77 (s) | 0.78 (s) |
| 12 | 0.96 (s) | 0.96 (s) | 0.95 (s) | 1.08 (s) | 1.06 (s) |
| 13 | 0.99 (d, 6.4) | 0.99 (d, 6.4) | 0.97 (d, 6.4) | 1.09 (d, 6.1) | 1.07 (d, 6.1) |
| Glc-1' | 4.33 (d, 8.0) |  |  | 4.28 (d, 7.7) |  |
| 2 ' | 3.19 (dd, 8.0, 9.2) |  |  | 3.22 (dd, 7.7, 9.5) |  |
| $3^{\prime}$ | 3.33 (dd, 9.2, 9.2) |  |  | 3.36 (dd, 8.9, 9.5) |  |
| $4^{\prime}$ | 3.28 (m) |  |  | 3.26 (m) |  |
| 5 | 3.28 (m) |  |  | 3.28 (m) |  |
| $6^{\prime}$ | 3.64 (m) |  |  | 3.66 (dd, 4.9, 11.9) |  |
|  | 3.86 (dd, 2.2, 12.0) |  |  | 3.84 (dd, 1.6, 11.9) |  |


| position | $8^{a}$ | $8{ }^{\text {c }}$ | 8a ${ }^{a}$ | $8 \mathbf{a}^{b}$ | 8d ${ }^{b}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\delta_{\mathbf{H}}(J \mathrm{~Hz})$ |
| $2 \alpha$ | 1.09 (dd, 11.9, 11.9) | 1.36 (dd, 12.2, 12.2) | 1.09 (dd, 12.0, 12.0) | 1.11 (dd, 11.9, 11.9) | 1.09 |
| $2 \beta$ | $\begin{aligned} & 1.64 \text { (ddd, } 2.4, \\ & 4.0,11.9) \end{aligned}$ | $\begin{aligned} & 1.91 \text { (ddd, } 2.5 \text {, } \\ & 4.3,12.2 \text { ) } \end{aligned}$ | $\begin{aligned} & 1.64 \text { (ddd, } 2.5, \\ & 4.0,12.0) \end{aligned}$ | 1.70 (ddd, 2.8, 4.3, 11.9) | 1.64 |
| 3 | 3.69 (m) | 3.97 (m) | 3.69 (m) | 3.76 (m) | 3.69 |
| $4 \alpha$ | $\begin{aligned} & 0.92 \text { (ddd, } 12.2 \text {, } \\ & 12.2,12.2) \end{aligned}$ | $\begin{aligned} & 1.16 \text { (ddd, } 12.1 \text {, } \\ & 12.1,12.1) \end{aligned}$ | $\begin{aligned} & 0.91 \text { (ddd, } 11.9 \text {, } \\ & 11.9,11.9) \end{aligned}$ | $\begin{aligned} & 0.94 \text { (ddd, 11.9, } \\ & 11.9,11.9) \end{aligned}$ | 0.90 |
| $4 \beta$ | 1.88 (m) | 2.08 (m) | 1.88 (m) | 1.94 (m) | 1.89 |
| 5 | 1.35 (m) | 1.35 (m) | 1.35 (m) | 1.48 (m) | 1.43 |
| 6 | $\begin{aligned} & 060 \text { (ddd, } 2.8 \text {, } \\ & 5.5,11.0) \end{aligned}$ | $\begin{aligned} & 0.53 \text { (ddd, } 2.7, \\ & 5.2,11.0 \text { ) } \end{aligned}$ | $\begin{aligned} & 0.59 \text { (ddd, } 2.5 \text {, } \\ & 5.2,10.7 \text { ) } \end{aligned}$ | $\begin{aligned} & 0.57 \text { (ddd, } 2.8, \\ & 5.2,11.0) \end{aligned}$ | 0.54 |
| 7 | 1.47 (m) | 1.41 (m) | 1.48 (m) | 1.41 (m) | 1.26 |
|  | 1.74 (m) | 1.80 (m) | 1.74 (m) | 1.76 (m) | 1.46 |
| 8 | $\begin{aligned} & 2.54 \text { (ddd, } 6.1 \text {, } \\ & 10.4,16.8 \text { ) } \end{aligned}$ | $\begin{aligned} & 2.64 \text { (ddd, } 5.8, \\ & 11.3,17.7 \text { ) } \end{aligned}$ | $\begin{aligned} & 2.43 \text { (ddd, } 6.1,10.4, \\ & 16.8) \end{aligned}$ | $\begin{aligned} & 2.40 \text { (ddd, } 6.1, \\ & 11.0,16.5) \end{aligned}$ | 1.48 |
|  | $\begin{aligned} & 2.62(\mathrm{ddd}, 5.5, \\ & 11.6,16.8) \end{aligned}$ | $\begin{aligned} & 2.70(\mathrm{ddd}, 5.8 \\ & 11.5,17.7) \end{aligned}$ | $\begin{aligned} & 2.54(\mathrm{ddd}, 5.2,11.0 \\ & 16.8) \end{aligned}$ | $\begin{aligned} & 2.51(\operatorname{ddd}, 5.2, \\ & 11.3,16.5) \end{aligned}$ | 1.57 |
| 9 ( 9 ( ${ }^{\text {a }}$ |  |  |  |  |  |
| 10 | 4.28 (d, 17.4) | 4.57 (d, 16.8) | 4.17 (2H, s) | 4.23 (2H, s) | 3.58 |
|  | 4.51 (d, 17.4) | 4.74 (d, 16.8) |  |  | 3.77 |
| 11 | 0.83 (s) | 0.78 (s) | 0.83 (s) | 0.83 (s) | 0.83 |
| 12 | 0.95 (s) | 0.89 (s) | 0.95 (s) | 0.94 (s) | 0.96 |
| 13 | 0.97 (d, 6.4) | 0.87 (d, 6.4) | 0.97 (d, 6.4) | 0.96 (d, 6.4) | 0.99 |
| Glc-1 ${ }^{\prime}$ | 4.29 (d, 7.1) | 4.95 (d, 7.1) |  |  | 4.27 |
| $2^{\prime}$ | 3.27 (m) | 4.13 (dd, 7.1, 8.8) |  |  | 3.21 |
| $3^{\prime}$ | 3.35 (m) | 4.25 (dd, 8.8, 8.8) |  |  | 3.36 |
| $4^{\prime}$ | 3.27 (m) | 4.23 (dd, 8.8, 9.0) |  |  | 3.27 |
| $5^{\prime}$ | 3.27 | 3.94 (m) |  |  | 3.27 |
| $6^{\prime}$ | 3.64 (m) | 4.38 (dd, 5.5, 11.9) |  |  | 3.64 |
|  | 3.86 (dd, 2.2, 11.9) | 4.53 (br, d, ca. 12) |  |  | 3.86 |

${ }^{a}$ Measured in $\mathrm{CD}_{3} \mathrm{OD} .{ }^{b}$ Measured in $\mathrm{CDCl}_{3 .}{ }^{c}$ Measured in pyridine- $d_{5}$.

Preparation of the $(R)$-MTPA Esters (1b, 1d) and $(S)$-MTPA Esters (1c, 1e) from 1a. A solution of 1a ( 9.3 mg ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2.0 mL ) was treated with $(R)$-2-methoxy-2-trifluoromethylphenylacetic acid [ $(R)$-MTPA, 45.6 mg ] in the presence of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride $(\mathrm{EDC} \cdot \mathrm{HCl}, 37.1 \mathrm{mg})$ and 4-dimethylaminopyridine (4-DMAP, 15.7 mg ), and the mixture was stirred at room temperature for 16 h . The reaction mixture was poured into ice-water and extracted with EtOAc. The EtOAc extract was successively washed with $5 \%$ aqueous HCl , saturated aqueous $\mathrm{NaHCO}_{3}$, and brine, then dried over $\mathrm{MgSO}_{4}$ powder and filtered. Removal of the
solvent from the filtrate under reduced pressure furnished a residue, which was purified by preparative $\mathrm{TLC}\left[\mathrm{CHCl}_{3}-\right.$ acetone $(20: 1$, v/v) $]$ to give $\mathbf{1 b}(1.2 \mathrm{mg}, 7 \%), \mathbf{1 d}(2.0 \mathrm{mg}, 11 \%)$, and $3,9-\mathrm{di}-(R)$-MTPA ester derivative of 1a (trace). Using a similar procedure, $\mathbf{1 c}(0.6 \mathrm{mg}$, $4 \%)$, $\mathbf{1 e}(1.8 \mathrm{mg}, 12 \%)$, and $3,9-$ di-( $S$ )-MTPA ester derivative of $\mathbf{1 a}$ (trace) were obtained from 1a ( 7.7 mg ) using ( $S$ )-MTPA ( 35.1 mg ), EDC $\cdot \mathrm{HCl}(32.9 \mathrm{mg})$, and $4-\mathrm{DMAP}(13.4 \mathrm{mg})$.

Compound 1b: colorless oil; ${ }^{1} \mathrm{H}$ NMR (pyridine- $\left.d_{5}, 500 \mathrm{MHz}\right) \delta$ 0.61 (ddd, $J=1.6,5.2,10.4 \mathrm{~Hz}, \mathrm{H}-6), 0.85,0.91$ ( 3 H each, both s , $\left.\mathrm{H}_{3}-12,11\right), 0.85\left(3 \mathrm{H}, \mathrm{d}, J=5.8 \mathrm{~Hz}, \mathrm{H}_{3}-13\right), 1.18(1 \mathrm{H}, \mathrm{ddd}, J=3.1$,

Table 6. ${ }^{13} \mathrm{C}$ NMR ( 125 MHz ) Data of $\mathbf{6}-\mathbf{8}$ and Related Compounds ( $\mathbf{6 a}-\mathbf{8 a}$ and $\mathbf{8 d}$ )

|  | $6^{a}$ | 6a ${ }^{a}$ | $\mathbf{6 a}^{b}$ | $7^{a}$ | $7 \mathbf{a}^{\text {b }}$ | $8^{a}$ | $8^{\text {c }}$ | $8 \mathbf{a}^{a}$ | $8 \mathbf{a}^{\text {b }}$ | 8d ${ }^{\text {b }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| position | $\delta_{\text {C }}$ |
| 1 | 36.8 | 36.8 | 35.3 | 40.4 | 39.3 | 36.8 | 35.9 | 36.8 | 35.9 | 36.8 |
| 2 | 51.9 | 51.9 | 51.0 | 57.1 | 56.3 | 51.8 | 52.0 | 51.8 | 50.9 | 51.9 |
| 3 | 67.4 | 67.4 | 66.9 | 214.2 | 211.1 | 67.3 | 65.8 | 67.3 | 66.7 | 67.4 |
| 4 | 46.5 | 46.5 | 45.6 | 50.9 | 50.1 | 46.4 | 46.6 | 46.4 | 45.5 | 46.5 |
| 5 | 34.8 | 35.2 | 33.8 | 37.7 | 36.1 | 34.9 | 33.8 | 34.9 | 33.5 | 35.1 |
| 6 | 54.4 | 54.1 | 52.5 | 52.2 | 52.6 | 53.4 | 52.2 | 53.5 | 52.2 | 54.1 |
| 7 | 25.9 | 26.2 | 24.8 | 26.1 | 25.0 | 23.4 | 22.6 | 23.7 | 22.7 | 26.2 |
| 8 | 35.0 | 36.7 | 35.3 | 36.5 | 35.2 | 41.6 | 41.2 | 41.0 | 40.3 | 36.6 |
| 9 | 83.2 | 73.7 | 72.5 | 72.2 | 72.6 | 210.9 | 208.6 | 212.4 | 209.4 | 71.8 |
| 10 | 65.9 | 67.4 | 66.9 | 75.4 | 66.6 | 74.7 | 74.5 | 68.8 | 68.1 | 75.0 |
| 11 | 21.4 | 21.4 | 20.9 | 21.1 | 20.7 | 21.3 | 21.1 | 21.3 | 20.9 | 21.4 |
| 12 | 31.4 | 31.3 | 30.7 | 30.3 | 29.9 | 31.4 | 30.9 | 31.3 | 30.7 | 31.4 |
| 13 | 21.6 | 21.5 | 21.0 | 21.5 | 21.0 | 21.4 | 21.7 | 21.4 | 20.9 | 21.5 |
| Glc-1' | 104.0 |  |  | 104.9 |  | 104.3 | 104.6 |  |  | 104.5 |
| $2^{\prime}$ | 75.2 |  |  | 75.1 |  | 75.0 | 75.0 |  |  | 75.2 |
| $3^{\prime}$ | 78.2 |  |  | 77.9 |  | 77.8 | 78.4 |  |  | 78.0 |
| $4^{\prime}$ | 71.7 |  |  | 71.6 |  | 71.6 | 71.6 |  |  | 71.8 |
| $5^{\prime}$ | 77.9 |  |  | 78.0 |  | 78.2 | 78.7 |  |  | 78.0 |
| $6^{\prime}$ | 62.7 |  |  | 62.7 |  | 62.8 | 62.8 |  |  | 62.9 |

${ }^{a}$ Measured in $\mathrm{CD}_{3} \mathrm{OD} .{ }^{b}$ Measured in $\mathrm{CDCl}_{3} .{ }^{c}$ Measured in pyridine- $d_{5}$.


Figure 3.
$12.5,13.7 \mathrm{~Hz}, \mathrm{H} \alpha-4), 1.35$ ( $1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5$ ), 1.37, 1.77 ( 1 H each, both m , $\left.\mathrm{H}_{2}-7\right), 1.42(1 \mathrm{H}$, br d, $J \approx 4,15 \mathrm{~Hz}, \mathrm{H} \alpha-2), 1.77(1 \mathrm{H}$, ddd, $J=2.1$, $2.1,14.7 \mathrm{~Hz}, \mathrm{H} \beta-2), 1.86(1 \mathrm{H}$, ddd, $J=3.1,6.1,13.7 \mathrm{~Hz}, \mathrm{H} \beta-4), 1.93$, 2.02 ( 1 H each, both $\mathrm{m}, \mathrm{H}_{2}-8$ ), 3.62, 3.74 ( 3 H each, both $\mathrm{s},-\mathrm{COOCH}_{3}$ ), $4.53(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9), 5.43(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3),[7.41-7.45(3 \mathrm{H}, \mathrm{m}), 7.76(2 \mathrm{H}$, dd-like), $\mathrm{Ph}-\mathrm{H}$ ].

Compound 1c: colorless oil; ${ }^{1} \mathrm{H}$ NMR (pyridine- $\left.d_{5}, 500 \mathrm{MHz}\right) \delta$ 0.62 (ddd, $J=1.8,5.8,10.7 \mathrm{~Hz}, \mathrm{H}-6), 0.62,0.85$ ( 3 H each, both s, $\left.\mathrm{H}_{3}-12,11\right), 0.93\left(3 \mathrm{H}, \mathrm{d}, J=5.8 \mathrm{~Hz}, \mathrm{H}_{3}-13\right), 1.26(1 \mathrm{H}, \mathrm{ddd}, J=3.2$, $12.7,14.4 \mathrm{~Hz}, \mathrm{H} \alpha-4), 1.37(1 \mathrm{H}$, br d, $J=4,15 \mathrm{~Hz}, \mathrm{H} \alpha-2), 1.40,1.78$ ( 1 H each, both $\mathrm{m}, \mathrm{H}_{2}-7$ ), $1.64(1 \mathrm{H}, \mathrm{ddd}, ~ J=2.5,2.5,14.7 \mathrm{~Hz}, \mathrm{H} \beta-2$ ), $1.67(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5), 1.91(1 \mathrm{H}, \mathrm{ddd}, J=2.5,4.9,14.4 \mathrm{~Hz}, \mathrm{H} \beta-4), 1.95$, 2.04 ( 1 H each, both $\mathrm{m}, \mathrm{H}_{2}-8$ ), $3.65,3.74\left(3 \mathrm{H}\right.$ each, both $\left.\mathrm{s},-\mathrm{COOCH}_{3}\right)$, $4.55(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9), 5.43(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3),[7.42-7.46(3 \mathrm{H}, \mathrm{m}), 7.78(2 \mathrm{H}$, dd-like), $\mathrm{Ph}-\mathrm{H}$ ].

Compound 1d: colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 0.54$ (ddd, $J=1.8,5.7,10.6 \mathrm{~Hz}, \mathrm{H}-6), 0.78,0.93$ ( 3 H each, both $\mathrm{s}, \mathrm{H}_{3}-12$, 11), $0.78\left(3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}, \mathrm{H}_{3}-13\right), 1.04,1.42$ ( 1 H each, both m , $\left.\mathrm{H}_{2}-7\right), 1.19(1 \mathrm{H}$, ddd, $J=3.2,12.4,14.5 \mathrm{~Hz}, \mathrm{H} \alpha-4), 1.33(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J$ $\approx 4,15 \mathrm{~Hz}, \mathrm{H} \alpha-2), 1.54(1 \mathrm{H}, \mathrm{m}, \mathrm{H} \beta-2), 1.58,1.81$ ( 1 H each, both m , $\left.\mathrm{H}_{2}-8\right), 1.68(1 \mathrm{H}$, ddd, $J=2.5,4.8,14.5 \mathrm{~Hz}, \mathrm{H} \beta-4), 2.00(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5)$, 3.66, $3.79\left(3 \mathrm{H}\right.$ each, both s, $\left.-\mathrm{COOCH}_{3}\right), 4.05(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 5.16(1 \mathrm{H}$, dd, $J=3.4,8.3 \mathrm{~Hz}, \mathrm{H}-9), 7.39-7.69(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-\mathrm{H})$.

Compound 1e: colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 0.61$ (ddd, $J=1.8,5.8,10.7 \mathrm{~Hz}, \mathrm{H}-6), 0.84,0.98$ ( 3 H each, both $\mathrm{s}, \mathrm{H}_{3}-12$, 11), $0.88\left(3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}, \mathrm{H}_{3}-13\right), 1.22,1.53$ ( 1 H each, both m ,
$\left.\mathrm{H}_{2}-7\right), 1.25(1 \mathrm{H}$, ddd, $J=3.2,12.7,14.4 \mathrm{~Hz}, \mathrm{H} \alpha-4), 1.36(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J$ $\approx 4,15 \mathrm{~Hz}, \mathrm{H} \alpha-2), 1.56(1 \mathrm{H}, \mathrm{ddd}, J=2.7,2.7,14.7 \mathrm{~Hz}, \mathrm{H} \beta-2), 1.64$, $1.87\left(1 \mathrm{H}\right.$ each, both $\left.\mathrm{m}, \mathrm{H}_{2}-8\right), 1.73(1 \mathrm{H}$, ddd, $J=2.5,4.9,14.4 \mathrm{~Hz}$, $\mathrm{H} \beta-4), 2.08(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5), 3.65,3.76\left(3 \mathrm{H}\right.$ each, both $\left.\mathrm{s},-\mathrm{COOCH}_{3}\right)$, $4.08(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 5.16(1 \mathrm{H}, \mathrm{dd}, J=3.4,8.3 \mathrm{~Hz}, \mathrm{H}-9), 7.39-7.61$ $(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-\mathrm{H})$.
$\mathrm{NaBH}_{4}$ Reduction of 1a. A solution of 1a $(18.9 \mathrm{mg})$ in $\mathrm{MeOH}-$ pyridine ( $2: 1, \mathrm{v} / \mathrm{v}, 1.5 \mathrm{~mL}$ ) was treated with $\mathrm{NaBH}_{4}(4.0 \mathrm{mg})$, and the mixture was stirred at room temperature for 3 h . The reaction mixture was quenched in acetone, and then removal of the solvent under reduced pressure gave a residue, which was purified by normal-phase silica gel CC [hexane-EtOAc $(5: 1 \rightarrow 1: 1, \mathrm{v} / \mathrm{v})$ ] to give $\mathbf{1 f}(10.7 \mathrm{mg}, 64 \%)$.

Compound 1f: colorless oil; $[\alpha]^{27}{ }_{\mathrm{D}}+37.2(c 1.30, \mathrm{MeOH})$; IR (film) $v_{\max } 3375,2922,2874,1473,1387,1026,756 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR data, see Table $1 ;{ }^{13} \mathrm{C}$ NMR data, see Table 2; positive-ion FABMS m/z 253 $[\mathrm{M}+\mathrm{Na}]^{+} ;$HRFABMS m/z 253.1789 (calcd for $\mathrm{C}_{13} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+$ $\mathrm{Na}]^{+}, 253.1780$ ).

Pivaloylation of 2. A solution of $2(36.8 \mathrm{mg})$ in pyridine $(1.0 \mathrm{~mL})$ was treated with pivaloyl chloride $(50 \mu \mathrm{~L})$, and the mixture was stirred at $60^{\circ} \mathrm{C}$ for 6 h . The reaction mixture was poured into ice-water, and the whole was extracted with EtOAc. The EtOAc extract was successively washed with $5 \%$ aqueous HCl , saturated aqueous $\mathrm{NaHCO}_{3}$, and brine, then dried over $\mathrm{MgSO}_{4}$ powder and filtered. Removal of the solvent under reduced pressure furnished a resudue, which was
purified by normal-phase silica gel CC [1.5 g, hexane-EtOAc (20:1 $\rightarrow 10: 1 \rightarrow 5: 1 \rightarrow 3: 1, \mathrm{v} / \mathrm{v})$ ] to give $\mathbf{2 a}(16.4 \mathrm{mg}, 32 \%)$ and $\mathbf{2 b}(8.3 \mathrm{mg}$, $13 \%)$.

Compound 2a: colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 0.56$ (ddd, $J=2.5,4.6,11.1 \mathrm{~Hz}, \mathrm{H}-6), 0.81,0.95$ ( 3 H each, both s, $\mathrm{H}_{3}-11$, 12), $0.94(1 \mathrm{H}, \mathrm{ddd}, J=12.2,12.2,12.2 \mathrm{~Hz}, \mathrm{H} \alpha-4), 0.96(3 \mathrm{H}, \mathrm{d}, J=$ $\left.6.7 \mathrm{~Hz}, \mathrm{H}_{3}-13\right), 1.07,1.60\left(1 \mathrm{H}\right.$ each, both $\left.\mathrm{m}, \mathrm{H}_{2}-7\right), 1.11(1 \mathrm{H}, \mathrm{dd}, J=$ $12.0,12.0 \mathrm{~Hz}, \mathrm{H} \alpha-2), 1.22\left[9 \mathrm{H}, \mathrm{s},-\mathrm{OCOC}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.45(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5)$, $1.45,1.59\left(1 \mathrm{H}\right.$ each, both $\left.\mathrm{m}, \mathrm{H}_{2}-8\right), 1.69(1 \mathrm{H}, \mathrm{ddd}, J=2.5,4.3,12.0$ $\mathrm{Hz}, \mathrm{H} \beta-2), 1.93(1 \mathrm{H}, \mathrm{m}, \mathrm{H} \beta-4), 3.76(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 3.79(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9)$, $[3.98(1 \mathrm{H}, \mathrm{dd}, J=6.7,11.3 \mathrm{~Hz}), 4.15(1 \mathrm{H}, \mathrm{dd}, J=3.4,11.3 \mathrm{~Hz})$, $\left.\mathrm{H}_{2}-10\right] ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 35.9(\mathrm{C}-1), 50.9(\mathrm{C}-2), 66.8$ (C-3), 45.6 (C-4), 33.5 (C-5), 52.6 (C-6), 24.7 (C-7), 35.6 (C-8), 70.7 (C-9), 68.2 (C-10), 20.8 (C-11), 30.6 (C-12), 20.9 (C-13), 178.7 $\left[-\mathrm{OCOC}\left(\mathrm{CH}_{3}\right)_{3}\right], 38.9\left[-\mathrm{OCOC}\left(\mathrm{CH}_{3}\right)_{3}\right], 27.2\left[-\mathrm{OCOC}\left(\mathrm{CH}_{3}\right)_{3}\right]$; EIMS $m / z 314\left[\mathrm{M}^{+},(1)\right], 296$ (5), 257 (1), 212 (2), 200 (1), 57 (100); HREIMS $\mathrm{m} / \mathrm{z} 314.2458$ (calcd for $\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{O}_{4}\left[\mathrm{M}^{+}\right], 314.2457$ ).

Compound 2b: colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 0.59$ (ddd, $J=2.1,4.9,11.0 \mathrm{~Hz}, \mathrm{H}-6), 0.87,0.95$ ( 3 H each, both s, $\mathrm{H}_{3}-11$, $12), 0.95\left(3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}, \mathrm{H}_{3}-13\right), 1.00(1 \mathrm{H}, \mathrm{ddd}, J=12.3,12.3$, $12.3 \mathrm{~Hz}, \mathrm{H} \alpha-4), 1.08,1.61$ ( 1 H each, both $\mathrm{m}, \mathrm{H}_{2}-7$ ), 1.16, $1.22[9 \mathrm{H}$ each, both s, $\left.-\mathrm{OCOC}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.26(1 \mathrm{H}, \mathrm{dd}, J=12.0,12.0 \mathrm{~Hz}, \mathrm{H} \alpha-$ 2), 1.46, $1.59\left(1 \mathrm{H}\right.$ each, both $\left.\mathrm{m}, \mathrm{H}_{2}-8\right), 1.52(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5), 1.67(1 \mathrm{H}$, ddd, $J=2.5,4.3,12.0 \mathrm{~Hz}, \mathrm{H} \beta-2), 1.93(1 \mathrm{H}, \mathrm{m}, \mathrm{H} \beta-4), 3.79(1 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-9)$, $[3.98(1 \mathrm{H}, \mathrm{dd}, J=6.7,11.3 \mathrm{~Hz}), 4.15(1 \mathrm{H}, \mathrm{dd}, J=3.4,11.3$ $\left.\mathrm{Hz}), \mathrm{H}_{2}-10\right], 4.83(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 35.9$ (C-1), 46.5 (C-2), 69.6 (C-3), 41.1 (C-4), 33.3 (C-5), 52.7 (C-6), 24.6 (C-7), 35.5 (C-8), 70.7 (C-9), 68.2 (C-10), 20.6 (C-11), 30.5 (C-12), 20.7 (C-13), 178.2, $178.8\left[-\mathrm{OCOC}\left(\mathrm{CH}_{3}\right)_{3}\right]$, 38.6, 38.9 [-OCOC$\left.\left(\mathrm{CH}_{3}\right)_{3}\right]$, 27.1, 27.2 [ $-\mathrm{OCOC}\left(\mathrm{CH}_{3}\right)_{3}$ ]; positive-ion CIMS $\mathrm{m} / \mathrm{z} 399[\mathrm{M}$ $+1]^{+}$, (9), 381 (3), 297 (100), 279 (14); HRCIMS m/z 399.3106 (calcd for $\left.\mathrm{C}_{23} \mathrm{H}_{42} \mathrm{O}_{5}[\mathrm{M}+1]^{+}, 399.3110\right)$.

Preparation of the $(\boldsymbol{R})$-MTPA Esters (2c, 2e) and ( $S$ )-MTPA Esters (2d, 2f) from 2a and 2b. A solution of 2a ( 7.6 mg ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(1.0 \mathrm{~mL})$ was treated with $(R)$-MTPA $(68.3 \mathrm{mg})$ in the presence of $\mathrm{EDC} \cdot \mathrm{HCl}(48.5 \mathrm{mg})$ and $4-\mathrm{DMAP}(21.6 \mathrm{mg})$, and the mixture was stirred under reflux for 6 h . Workup of the reaction mixture as described above gave a residue, which was purified by normal-phase silica gel $\mathrm{CC}[800 \mathrm{mg}$, hexane- $\operatorname{EtOAc}(40: 1 \rightarrow 10: 1 \rightarrow 5: 1 \rightarrow 2: 1, \mathrm{v} / \mathrm{v})$ ] to give 2c ( $1.3 \mathrm{mg}, 10 \%$ ). Using a similar procedure, $(S)$-MTPA ester derivative of $\mathbf{2 a}(\mathbf{2 d}, 1.2 \mathrm{mg}, 10 \%)$ was obtained from $\mathbf{2 a}(7.2 \mathrm{mg})$ using ( $S$ )MTPA $(62.5 \mathrm{mg}), \mathrm{EDC} \cdot \mathrm{HCl}(53.4 \mathrm{mg})$, and 4-DMAP $(21.6 \mathrm{mg})$. Through the similar procedure, a solution of $\mathbf{2 b}(4.2 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(1.0 \mathrm{~mL})$ was treated with $(R)$-MTPA $(50.7 \mathrm{mg})$ in the presence of $\mathrm{EDC} \cdot \mathrm{HCl}(32.5 \mathrm{mg})$ and $4-\mathrm{DMAP}(17.2 \mathrm{mg})$, and the mixture was stirred under reflux for 6 h . Workup of the reaction mixture as described above gave a residue, which was purified by normal-phase silica gel CC [580 mg, hexane-EtOAc $(20: 1 \rightarrow 10: 1, \mathrm{v} / \mathrm{v})$ ] to give $2 \mathrm{e}(0.3 \mathrm{mg}$, $5 \%$ ). Using a similar procedure, ( $S$ )-MTPA ester derivative of $\mathbf{2 b}$ (2f, $0.2 \mathrm{mg}, 4 \%)$ was obtained from 2b $(3.4 \mathrm{mg})$ using $(S)$-MTPA ( 45.8 $\mathrm{mg}), \mathrm{EDC} \cdot \mathrm{HCl}(31.2 \mathrm{mg})$, and 4-DMAP ( 15.5 mg ).

Compound 2c: colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 0.61$ (ddd, $J=2.5,4.6,11.1 \mathrm{~Hz}, \mathrm{H}-6), 0.89,0.95$ ( 3 H each, both s, $\mathrm{H}_{3}-12$, 11), $0.98\left(3 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}, \mathrm{H}_{3}-13\right), 1.09,1.60(1 \mathrm{H}$ each, both m , $\mathrm{H} 2-7), 1.17(1 \mathrm{H}$, ddd, $J=12.2,12.2,12.2 \mathrm{~Hz}, \mathrm{H} \alpha-4), 1.22[9 \mathrm{H}, \mathrm{s}$, $\left.-\mathrm{OCOC}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.25(1 \mathrm{H}, \mathrm{dd}, J=12.2,12.2 \mathrm{~Hz}, \mathrm{H} \alpha-2), 1.45,1.59$ ( 1 H each, both $\mathrm{m}, \mathrm{H}_{2}-8$ ) $, 1.55(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5), 1.73(1 \mathrm{H}$, ddd, $J=2.5$, $4.3,12.2 \mathrm{~Hz}, \mathrm{H} \beta-2), 2.05(1 \mathrm{H}, \mathrm{m}, \mathrm{H} \beta-4), 3.56\left(3 \mathrm{H}, \mathrm{s},-\mathrm{COOCH}_{3}\right)$, $3.78(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9)$, $3.98(1 \mathrm{H}, \mathrm{dd}, J=6.7,11.3 \mathrm{~Hz}), 4.14(1 \mathrm{H}, \mathrm{dd}, J$ $\left.=3.4,11.3 \mathrm{~Hz}), \mathrm{H}_{2}-10\right], 5.14(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 7.39-7.53(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-$ H).

Compound 2d: colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 0.60$ (ddd, $J=2.5,4.6,11.1 \mathrm{~Hz}, \mathrm{H}-6), 0.90,0.98$ ( 3 H each, both s, $\mathrm{H}_{3}-12$, 11), $0.96\left(3 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}, \mathrm{H}_{3}-13\right), 1.07(1 \mathrm{H}, \mathrm{ddd}, J=12.3,12.3$, $12.3 \mathrm{~Hz}, \mathrm{H} \alpha-4), 1.09,1.60\left(1 \mathrm{H}\right.$ each, both $\left.\mathrm{m}, \mathrm{H}_{2}-7\right), 1.22$ [9H, s, $\left.-\mathrm{OCOC}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.35(1 \mathrm{H}, \mathrm{dd}, J=11.9,11.9 \mathrm{~Hz}, \mathrm{H} \alpha-2), 1.45,1.58$ ( 1 H each, both $\mathrm{m}, \mathrm{H}_{2}-8$ ), $1.53(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5), 1.79(1 \mathrm{H}$, ddd, $J=2.5$, $4.3,11.9 \mathrm{~Hz}, \mathrm{H} \beta-2), 1.98(1 \mathrm{H}, \mathrm{m}, \mathrm{H} \beta-4), 3.55\left(3 \mathrm{H}, \mathrm{s},-\mathrm{COOCH}_{3}\right)$, $3.78(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9)$, $[3.97(1 \mathrm{H}, \mathrm{dd}, J=6.7,11.3 \mathrm{~Hz}), 4.14(1 \mathrm{H}, \mathrm{dd}, J$ $\left.=3.4,11.3 \mathrm{~Hz}), \mathrm{H}_{2}-10\right], 5.14(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 7.40-7.53(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-$ H).

Compound 2e: colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 0.56$ (ddd, $J=2.1,4.9,11.0 \mathrm{~Hz}, \mathrm{H}-6), 0.81,0.88$ ( 3 H each, both $\mathrm{s}, \mathrm{H}_{3}-12$, 11), $0.92\left(3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}, \mathrm{H}_{3}-13\right), 0.99(1 \mathrm{H}, \mathrm{ddd}, J=12.0,12.0$, $12.0 \mathrm{~Hz}, \mathrm{H} \alpha-4), 1.10,1.49$ (1H each, both $\mathrm{m}, \mathrm{H}_{2}-7$ ), $1.14,1.16[9 \mathrm{H}$
each, both s, $\left.-\mathrm{OCOC}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.19(1 \mathrm{H}, \mathrm{dd}, J=12.0,12.0 \mathrm{~Hz}, \mathrm{H} \alpha-$ 2), $1.51(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5), 1.60,1.78\left(1 \mathrm{H}\right.$ each, both $\left.\mathrm{m}, \mathrm{H}_{2}-8\right), 1.66(1 \mathrm{H}$, ddd, $J=2.8,4.0,12.0 \mathrm{~Hz}, \mathrm{H} \beta-2), 1.91(1 \mathrm{H}, \mathrm{m}, \mathrm{H} \beta-4), 3.55(3 \mathrm{H}, \mathrm{s}$, $\left.-\mathrm{COOCH}_{3}\right),[4.06(1 \mathrm{H}, \mathrm{dd}, J=6.1,12.5 \mathrm{~Hz}), 4.31(1 \mathrm{H}, \mathrm{dd}, J=3.1$, $\left.12.5 \mathrm{~Hz}), \mathrm{H}_{2}-10\right], 4.80(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 5.23(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9), 7.39-7.55$ ( $5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-\mathrm{H}$ ).

Compound 2f: colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 0.49$ (ddd, $J=1.8,4.2,10.7 \mathrm{~Hz}, \mathrm{H}-6), 0.73,0.78$ ( 3 H each, both $\mathrm{s}, \mathrm{H}_{3}-12$, $11), 0.87\left(3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}, \mathrm{H}_{3}-13\right), 0.96(1 \mathrm{H}, \mathrm{ddd}, J=11.9,11.9$, $11.9 \mathrm{~Hz}, \mathrm{H} \alpha-4), 1.01,1.33$ ( 1 H each, both $\mathrm{m}, \mathrm{H}_{2}-7$ ), $1.15,1.17[9 \mathrm{H}$ each, both s, $\left.-\mathrm{OCOC}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.15(1 \mathrm{H}, \mathrm{dd}, J=12.1,12.1 \mathrm{~Hz}, \mathrm{H} \alpha-$ 2), $1.45(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5), 1.57,1.69\left(1 \mathrm{H}\right.$ each, both $\left.\mathrm{m}, \mathrm{H}_{2}-8\right), 1.65(1 \mathrm{H}$, ddd, $J=2.5,4.3,12.1 \mathrm{~Hz}, \mathrm{H} \beta-2), 1.90(1 \mathrm{H}, \mathrm{m}, \mathrm{H} \beta-4), 3.55(3 \mathrm{H}, \mathrm{s}$, $\left.-\mathrm{COOCH}_{3}\right),[4.08(1 \mathrm{H}, \mathrm{dd}, J=6.7,12.2 \mathrm{~Hz}), 4.37(1 \mathrm{H}, \mathrm{dd}, J=3.1$, $\left.12.2 \mathrm{~Hz}), \mathrm{H}_{2}-10\right], 4.81(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 5.23(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9), 7.34-7.56$ ( $5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-\mathrm{H}$ ).

Acid Hydrolysis of 3-8. A solution of 3-8 (each 1.0 mg ) in 1 M $\mathrm{HCl}(1.0 \mathrm{~mL})$ was heated under reflux for 3 h . After cooling, the reaction mixture was extracted with EtOAc. The aqueous layer was subjected to HPLC: column, Kaseisorb LC $\mathrm{NH}_{2}-60-5,4.6 \mathrm{~mm}$ i.d. $\times$ 250 mm (Tokyo Kasei Co., Ltd., Tokyo, Japan); detection, optical rotation [Shodex OR-2 (Showa Denko Co., Ltd., Tokyo, Japan); mobile phase, $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}(85: 15, \mathrm{v} / \mathrm{v})$; flow rate $\left.0.8 \mathrm{~mL} / \mathrm{min}\right]$. Identification of D -glucose present in the aqueous layer was carried out by comparison of its retention time and optical rotation with those of an authentic sample.

Enzymatic Hydrolysis of 3-8 with $\beta$-Glucosidase. A solution of $3-6\left(3.0,7.6,5.0\right.$, and 2.0 mg , respectively) in $\mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{~mL})$ was treated with $\beta$-glucosidase ( $2.0,2.0,2.6,2.0 \mathrm{mg}$, respectively). The solution was stirred at $37^{\circ} \mathrm{C}$ for $16 \mathrm{~h}, \mathrm{EtOH}$ was added to the reaction mixture, the solvent was removed under reduced pressure, and the residue was purified by HPLC $\left[\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(40: 60\right.$, v/v)] to furnish sarmentol A (2, $1.5 \mathrm{mg}, 91 \%$ from $3 ; 3.8 \mathrm{mg}, 85 \%$ from $\mathbf{4} ; 2.9 \mathrm{mg}$, $95 \%$ from 5) and sarmentol B (6a, $1.0 \mathrm{mg}, 85 \%$ from 6). A solution of $7(12.1 \mathrm{mg})$ or $\mathbf{8}(25.1 \mathrm{mg})$ in $\mathrm{H}_{2} \mathrm{O}(2.0 \mathrm{~mL})$ was treated with $\beta$-glucosidase $(8.0,18.2 \mathrm{mg}$, respectively), and the solution was stirred at $37{ }^{\circ} \mathrm{C}$ for 16 h . The residue was purified by HPLC $\left[\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}\right.$ ( $40: 60, \mathrm{v} / \mathrm{v}$ )] to give sarmentols C ( $\mathbf{7 a}, 6.3 \mathrm{mg}, 89 \%$ from 7 ) and D ( $\mathbf{8 a}, 12.1 \mathrm{mg}, 82 \%$ from 8 ), respectively.

Sarmentol B (6a): colorless oil; $[\alpha]^{25}{ }_{D}+5.6(c 0.05, \mathrm{MeOH})$; IR (film) $v_{\max } 3372,2924,2874,1474,1387,1026,754 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR data, see Table 5; ${ }^{13} \mathrm{C}$ NMR data, see Table 6; positive-ion FABMS $m / z 253[\mathrm{M}+\mathrm{Na}]^{+}$; HRFABMS $m / z 253.1771$ (calcd for $\mathrm{C}_{13} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{Na}$ $\left.[\mathrm{M}+\mathrm{Na}]^{+}, 253.1780\right)$.

Sarmentol C (7a): colorless oil; $[\alpha]^{23}{ }_{\mathrm{D}}+11.9(c 0.22, \mathrm{MeOH})$; CD $(\mathrm{MeOH}) \lambda_{\text {max }}(\Delta \epsilon) 286(+0.19)$; IR (film) $\nu_{\max } 3432,2955,2876,1700$, 1653, 1472, 1391, 1285, 1100, $1063 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR data, see Table 5; ${ }^{13} \mathrm{C}$ NMR data, see Table 6; positive-ion CIMS m/z $229[\mathrm{M}+1]^{+}$ (57), 211 (41), 197 (64), 138 (64), 95 (100); HRCIMS m/z 229.1801 (calcd for $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{O}_{3}[\mathrm{M}+1]^{+}, 229.1804$ ).

Sarmentol D (8a): colorless oil; $[\alpha]^{21}{ }_{\mathrm{D}}+1.2(c 0.42, \mathrm{MeOH})$; IR (film) $v_{\max } 3346,2955,2876,1717,1473,1073,1026 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR data, see Table $1 ;{ }^{13} \mathrm{C}$ NMR data, see Table 2; EIMS $m / z 228[\mathrm{M}]^{+}$ (1), 210 (15), 200 (2), 197 (61), 179 (67), 161 (100); HREIMS: $m / z$ 228.1723 (calcd for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{O}_{3}, 228.1725$ ).
$\mathrm{NaBH}_{4}$ Reduction of 7 and 8. A solution of $7(5.1 \mathrm{mg})$ in MeOH $(1.5 \mathrm{~mL})$ was treated with $\mathrm{NaBH}_{4}(1.2 \mathrm{mg})$, and the mixture was stirred at room temperature for 30 min . The reaction mixture was quenched in acetone, and then removal of the solvent under reduced pressure gave a residue, which was purified by HPLC $\left[\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}\right.$ (34:66, $\mathrm{v} / \mathrm{v})$ ] to give $5(0.7 \mathrm{mg}, 14 \%)$ and $\mathbf{7 b}(0.2 \mathrm{mg}, 4 \%)$. Through the similar procedure, a solution of $\mathbf{8}(20.0 \mathrm{mg})$ in $\mathrm{MeOH}(2.0 \mathrm{~mL})$ was treated with $\mathrm{NaBH}_{4}(3.0 \mathrm{mg})$ and the mixture was stirred at room temperature for 30 min . Workup of the reaction mixture as described above gave a residue, which was purified by HPLC $\left[\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(25: 75, \mathrm{v} / \mathrm{v})\right]$ to give $5(6.3 \mathrm{mg}, 31 \%)$ and $\mathbf{8 d}(6.3 \mathrm{mg}, 31 \%)$.

Compound 7b: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right) \delta 0.53(1 \mathrm{H}$, ddd, $J$ $=2.1,5.0,11.0 \mathrm{~Hz}, \mathrm{H}-6), 0.83,0.95$ ( 3 H each, both $\mathrm{s}, \mathrm{H}_{3}-12,11$ ), $0.98\left(3 \mathrm{H}, \mathrm{d}, J=6.2 \mathrm{~Hz}, \mathrm{H}_{3}-13\right), 1.60(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5),[3.52(1 \mathrm{H}, \mathrm{dd}, J$ $\left.=5.5,11.2 \mathrm{~Hz}), 3.68(1 \mathrm{H}, \mathrm{dd}, J=3.1,11.2 \mathrm{~Hz}), \mathrm{H}_{2}-10\right]$, $[3.64(1 \mathrm{H}$, m), $\left.3.86(1 \mathrm{H}, \mathrm{dd}, J=1.6,10.1 \mathrm{~Hz}), \mathrm{H}_{2}-6^{\prime}\right], 3.96(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 4.41$ $\left(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right)$; positive-ion FABMS m/z $415[\mathrm{M}+\mathrm{Na}]^{+}$; HRFABMS $m / z 415.2316$ (calcd for $\mathrm{C}_{19} \mathrm{H}_{36} \mathrm{O}_{8} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}, 415.2308$ ).

Compound 8d: amorphous powder; $[\alpha]^{25}$ D -20.2 ( c 2.50 , MeOH); IR (KBr) $\nu_{\max } 3422,2940,1565,1475,1078 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR data, see

Table 5; ${ }^{13} \mathrm{C}$ NMR data, see Table 6; positive-ion FABMS m/z 415 [M $+\mathrm{Na}]^{+} ;$HRFABMS m/z 415.2301 (calcd for $\mathrm{C}_{19} \mathrm{H}_{36} \mathrm{O}_{8} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$, 415.2308).

Enzymatic Hydrolysis of 8d with $\beta$-Glucosidase. A solution of $\mathbf{8 d}(5.0 \mathrm{mg})$ in $\mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{~mL})$ was treated with $\beta$-glucosidase ( 3.0 mg ), and the solution was stirred at $37^{\circ} \mathrm{C}$ for 16 h . After EtOH was added to the reaction mixture, the solvent was removed under reduced pressure and the residue was purified by HPLC $\left[\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(40: 60, \mathrm{v} / \mathrm{v})\right]$ to give $\mathbf{6 a}$ ( $2.7 \mathrm{mg}, 92 \%$ ).

Preparation of the $(\boldsymbol{R})$-MTPA Ester $(\mathbf{8 b})$ and $(S)$-MTPA Ester ( $\mathbf{8 c}$ ) from $8 \mathbf{a}$. A solution of $\mathbf{8 a}(6.4 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ was treated with $(R)$-MTPA $(78.6 \mathrm{mg})$ in the presence of $\mathrm{EDC} \cdot \mathrm{HCl}(62.1 \mathrm{mg})$ and 4-DMAP ( 30.5 mg ), and the mixture was stirred at room temperature for 6 h . Workup of the reaction mixture as described above gave a residue, which was purified by normal-phase silica gel CC [1.0 g, hexane-EtOAc $(30: 1 \rightarrow 10: 1, \mathrm{v} / \mathrm{v})$ ] to give $\mathbf{8 b}(10.4 \mathrm{mg}, 61 \%)$. Using a similar procedure, the $(S)$-MTPA ester $8 \mathrm{c}(8.3 \mathrm{mg}, 62 \%)$ was obtained from $8 \mathbf{a}(4.7 \mathrm{mg})$ using $(S)$-MTPA $(78.5 \mathrm{mg}), \mathrm{EDC} \cdot \mathrm{HCl}(60.1 \mathrm{mg})$, and 4-DMAP ( 23.9 mg ).

Compound 8b: colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 0.60$ (ddd, $J=2.8,5.5,11.0 \mathrm{~Hz}, \mathrm{H}-6), 0.89,0.93$ ( 3 H each, both $\mathrm{s}, \mathrm{H}_{3}-11$, 12), $0.96\left(3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}, \mathrm{H}_{3}-13\right), 1.17(1 \mathrm{H}$, ddd, $J=11.9,11.9$, $11.9 \mathrm{~Hz}, \mathrm{H} \alpha-4), 1.25(1 \mathrm{H}, \mathrm{dd}, J=12.5,12.5 \mathrm{~Hz}, \mathrm{H} \alpha-2), 1.42,1.77$ ( 1 H each, both $\mathrm{m}, \mathrm{H}_{2}-7$ ), $1.57(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5), 1.73(1 \mathrm{H}$, ddd, $J=2.8$, $4.6,12.5 \mathrm{~Hz}, \mathrm{H} \beta-2), 2.05(1 \mathrm{H}, \mathrm{m}, \mathrm{H} \beta-4),[2.40(1 \mathrm{H}, \mathrm{ddd}, J=5.8$, $11.0,17.4 \mathrm{~Hz}), 2.52(1 \mathrm{H}$, ddd, $\left.J=4.9,11.6,17.4 \mathrm{~Hz}), \mathrm{H}_{2}-8\right], 3.54$, 3.64 (3H each, both s, $-\mathrm{COOCH}_{3}$ ), 4.78, $4.89(1 \mathrm{H}$ each, both d, $J=$ $\left.16.5 \mathrm{~Hz}, \mathrm{H}_{2}-10\right), 5.13(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 7.39-7.64(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-\mathrm{H})$.

Compound 8c: colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 0.60$ (ddd, $J=2.5,5.2,10.7 \mathrm{~Hz}, \mathrm{H}-6), 0.90,0.96$ ( 3 H each, both $\mathrm{s}, \mathrm{H}_{3}-11$, 12), $0.93\left(3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}, \mathrm{H}_{3}-13\right), 1.07(1 \mathrm{H}, \mathrm{ddd}, J=11.9,11.9$, $11.9 \mathrm{~Hz}, \mathrm{H} \alpha-4), 1.34(1 \mathrm{H}, \mathrm{dd}, J=12.2,12.2 \mathrm{~Hz}, \mathrm{H} \alpha-2), 1.40,1.76$ ( 1 H each, both $\mathrm{m}, \mathrm{H}_{2}-7$ ), $1.55(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5), 1.80(1 \mathrm{H}$, ddd, $J=2.2$, $4.3,12.2 \mathrm{~Hz}, \mathrm{H} \beta-2), 1.97(1 \mathrm{H}, \mathrm{m}, \mathrm{H} \beta-4),[2.40(1 \mathrm{H}, \mathrm{ddd}, J=6.1$, $10.4,16.8 \mathrm{~Hz}), 2.51(1 \mathrm{H}$, ddd, $\left.J=5.2,11.0,16.8 \mathrm{~Hz}), \mathrm{H}_{2}-8\right], 3.54$, $3.64\left(3 \mathrm{H}\right.$ each, both $\left.\mathrm{s},-\mathrm{COOCH}_{3}\right), 4.78,4.89(1 \mathrm{H}$ each, both d, $J=$ $\left.16.5 \mathrm{~Hz}, \mathrm{H}_{2}-10\right), 5.13(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 7.39-7.64(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-\mathrm{H})$.

Acknowledgment. Part of this work was supported by the 21st COE program and Academic Frontier Project from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Supporting Information Available: ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, HMBC, and NOE correlations of $\mathbf{1 - 8}$ (Figure S1). This information is available free of charge via the Internet at http://pubs.acs.org.

## References and Notes

(1) This paper is number 21 in our series Bioactive Constituents from Chinese Natural Medicines. For paper number 20, see: Matsuda, H.; Sugimoto, S.; Morikawa, T.; Kubo, M.; Nakamura, S.; Yoshikawa, M. Chem. Pharm. Bull. 2007, 55, 106-110.
(2) Shanghai Scientific and Technologic Press Ed. Dictionary of Chinese Traditional Medicines; Shogakkan: Tokyo, 1985; pp 1427-1428.
(3) Kang, T. H.; Pae, H. O.; Yoo, J. C.; Kim, N. Y.; Kim, Y. C.; Ko, G. I.; Chung, H. T. J. Ethnopharmacol. 2000, 70, 177-182.
(4) He, A.; Wang, M. Zhongcaoyao 1997, 28, 517-522.
(5) Liang, Q.; Xu, L.; Zhuang, Y.; Wu, T. Zhongcaoyao 2001, 32, 305, 375.
(6) Wei, T.; Yan, Y.; Guan, X.; Liu, Y.; Wei, D. Beijing Zhongyiyao Daxue Xuebao 2003, 26, 59-61.
(7) Oh, H.; Kang, D.-G.; Kwon, J.-W.; Kwon, T.-O.; Lee, S.-Y.; Lee, D.-B.; Lee, H.-S. Biol. Pharm. Bull. 2004, 27, 2035-2037.
(8) He, A.; Hao, H.; Wang, M.; Zhang, D. Zhongguo Yaoke Daxue Xuebao 1997, 28, 271-274.
(9) He, A.; Wang, M.; Hao, H.; Zhang, D.; Lee, K.-H. Phytochemistry 1998, 49, 2607-2610.
(10) Fang, S.; Yan, X.; Li, J.; Fan, Z.; Xu, X.; Xu, R. Hиaxue Xuebao 1982, 40, 273-280.
(11) Lu, X.; Cao, X.; Zhang, S.; Hu, Y.; Bao, X.; Wang, Y. Yaoxue Xuebao 1984, 19, 914-920.
(12) Matsuda, H.; Morikawa, T.; Tao, J.; Ueda, K.; Yoshikawa, M. Chem. Pharm. Bull. 2002, 50, 208-215.
(13) Morikawa, T.; Matsuda, H.; Toguchida, I.; Ueda, K.; Yoshikawa, M. J. Nat. Prod. 2002, 65, 1468-1474.
(14) Tao, J.; Morikawa, T.; Toguchida, I.; Ando, S.; Matsuda, H.; Yoshikawa, M. Bioorg. Med. Chem. 2002, 10, 4005-4012.
(15) Morikawa, T.; Tao, J.; Matsuda, H.; Yoshikawa, M. J. Nat. Prod. 2003, 66, 638-645.
(16) Tao, J.; Morikawa, T.; Ando, S.; Matsuda, H.; Yoshikawa, M. Chem. Pharm. Bull. 2003, 51, 654-662.
(17) Matsuda, H.; Morikawa, T.; Xie, H.; Yoshikawa, M. Planta Med. 2004, 70, 847-855.
(18) Sun, B.; Morikawa, T.; Matsuda, H.; Tewtrakul, S.; Wu, L. J.; Harima, S.; Yoshikawa, M. J. Nat. Prod. 2004, 67, 1464-1469.
(19) Morikawa, T.; Sun, B.; Matsuda, H.; Wu, L. J.; Harima, S.; Yoshikawa, M. Chem. Pharm. Bull. 2004, 52, 1194-1199.
(20) Xie, H.; Wang, T.; Matsuda, H.; Morikawa, T.; Yoshikawa, M. Tani, T. Chem. Pharm. Bull. 2005, 53, 1416-1422.
(21) Morikawa, T.; Xie, H.; Matsuda, H.; Yoshikawa, T. J. Nat. Prod. 2006, 69, 881-886.
(22) Morikawa, T.; Xie, H.; Matsuda, H.; Wang, T.; Yoshikawa, M. Chem. Pharm. Bull. 2006, 54, 506-513.
(23) Xie, H.; Morikawa, T.; Matsuda, H.; Nakamura, S.; Muraoka, O.; Yoshikawa, M. Chem. Pharm. Bull. 2006, 54, 669-675.
(24) Yoshikawa, M.; Matsuda, H.; Morikawa, T.; Xie, H.; Nakamura, S.; Muraoka, O. Bioorg. Med. Chem. 2006, 14, 7468-7475.
(25) Otsuka, H.; Zhong, X.-N.; Hirata, E.; Shinzato, T.; Takeda, Y. Chem. Pharm. Bull. 2001, 49, 1093-1097.
(26) Hisamoto, M.; Kikuzaki, H.; Nakatani, N. J. Agric. Food Chem. 2004, 52, 445-450.
(27) De Marino, S.; Borbone, N.; Zollo, F.; Ianaro, A.; Di Meglio, P.; Iorizzi, M. J. Agric. Food Chem. 2004, 52, 7525-7531.
(28) Harput, U. S.; Saracoglu, I.; Nagatsu, A.; Ogihara, Y. Chem. Pharm. Bull. 2002, 50, 1106-1108.
(29) Otsuka, H.; Tamaki, A. Chem. Pharm. Bull. 2002, 50, 390-394.
(30) The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1}-\mathbf{8}, \mathbf{1 a}, \mathbf{1 f}, \mathbf{6 a}-\mathbf{8 a}$, and $\mathbf{8 d}$ were assigned with the aid of distortionless enhancement by polarization transfer (DEPT), homocorrelation spectroscopy ( ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY), heteronuclear multiple quantum coherence (HMQC), and HMBC experiments.
(31) Ohtani, I.; Kusumi, T.; Kashman, Y.; Kakisawa, H. J. Am. Chem. Soc. 1991, 113, 4092-4096.
(32) Inada, A.; Nakamura, Y.; Konishi, M.; Murata, H.; Kitamura, F.; Toya, H.; Nakanishi, T. Chem. Pharm. Bull. 1991, 39, 2437-2439.
NP068059S


[^0]:    * To whom correspondence should be addressed. Tel: +81-75-595-4633. Fax: +81-75-595-4768. E-mail: myoshika@mb.kyoto-phu.ac.jp.
    $\dagger$ Kyoto Pharmaceutical University.
    * Pharmaceutical Research and Technology Institute, Kinki University.
    § School of Pharmacy, Kinki University.

